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Abstract

We develop a novel method for extracting graph char-
acteristics from edge-weighted graphs, based on an exten-
sion of the Ihara zeta function from unweighted to edge-
weighted graphs. This is effected by generalizing the deter-
minant form of the Ihara zeta function. We use the set of
the reciprocal polynomial coefficients of the resulting Ihara
zeta function, i.e. the Ihara coefficients, to construct our
characterization. We also present a spectral analysis of the
edge-weighted graph Ihara coefficients and indicate their
advantages over graph spectral methods. Experimental re-
sults reveal that the Ihara coefficients are effective for the
purpose of clustering edge-weighted graphs.

1. Introduction

Graph-based methods were one of the earliest paradigms
proposed for scene understanding [10][2], and have pro-
vided powerful tools for the analysis of shape, object and
scene structures in computer vision. Examples include the
analysis of shock-graphs [19], articulated shape representa-
tion [14] and object tracking [20]. Recently, the appearance
based methods based on the arrangement of SIFT features
have provided impressive practical results for object recog-
nition and video analysis [15]. However, here too, the need
for structural representations has been demonstrated with
the SIFT features being augmented by constellations [9] and
k-fans [7] to represent the arrangement of feature points.

When dealing with graph-based representations of im-
age structures there are two ways in which the analysis
of structure can be conducted. The first of these is to
perform a detailed correspondence analysis and to seek
matches between the nodes of the structures under consid-
eration. There are many examples of node correspondence
algorithms in computer vision, especially for feature point
matching [6][13][23]. These methods exploit local connec-
tivity information together with node and edge attributes to
match relational structures by optimizing a criterion func-
tion. However, correspondence matching can become in-

tractable when the sizes of the structures become large and
when feature points tend to be less discriminative. It is for
these reasons that a second approach based on comparing
permutation invariant characteristics extracted from graphs
is adopted as an alternative.

There are a number of alternative node permutation in-
variant characterizations that can be used. Perhaps the sim-
plest of these are topological properties such as the size,
edge density, the perimeter or diameter and the number of
cycles of different degrees. A more sophisticated alterna-
tive is to use features extracted from a matrix characteriza-
tion of a graph. Here the initial matrix representation M
can be based either on the adjacency matrix, the Laplacian
matrix or the signless Laplacian. The matrix can be charac-
terized using either its eigenvalues sp(M) and eigenvectors
(i.e. using spectral graph theory) or by the coefficients of its
characteristic polynomial det(λI−M) (i.e. using algebraic
graph theory). The two approaches are essentially equiva-
lent and have led to a number of practical characterizations
that can be used for both object recognition and shape clus-
tering [21][13][22].

An alternative characterization that has received rela-
tively little attention in the computer vision and pattern
recognition community is provided by the zeta function. In
number theory, the Riemann zeta function is determined by
the locations of the prime numbers. There is a natural ex-
tension of the Riemann zeta function from prime numbers
to graphs. For instance, the Ihara zeta function is deter-
mined by the set of prime cycles on a graph, and is detailed
in [11]. Bass [4] has generalized the explicit factorizations
to all finite graphs. It is interesting to note that the Ihara
zeta function is computed by first transforming the graph
in-hand into an oriented line graph, and then computing the
characteristic polynomial of the adjacency matrix of the ori-
ented line graph. The zeta function is determined by the
reciprocal of the characteristic polynomial, and the prime
cycles determine the poles of the zeta function in a man-
ner analogous to the prime numbers. There have been a
number of recent applications of zeta functions in computer
vision and pattern recognition. For instance, Ren et al. [17]
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have shown how to use the coefficients of the characteristic
polynomial of the oriented line graph to cluster unweighted
graphs. Zhao et al. [24] have used Savchenko’s formula-
tion of the zeta function, expressed in terms of cycles, to
generate merge weights for clustering over a graph-based
representation of pairwise similarity data [24]. Bai et al.
[1] have shown that the Riemann zeta function is the mo-
ment generating function of the heat-kernel trace and have
used the moments to cluster graphs.

Although the the zeta function draws on the characteris-
tic polynomial of a graph and is hence akin to methods from
algebraic graph theory, it first relies on a graph transforma-
tion. This is an interesting observation since the quest for
improved alternatives to the adjacency and Laplacian ma-
trices has been a quest in spectral graph theory. Recently,
the signless Laplacian (i.e. the degree matrix plus the adja-
cency matrix) has been suggested. Additionally, Emms et
al. [8] have recently shown that a unitary matrix charac-
terization of the oriented line graph can be used to reduce
or even completely lift the cospectrality of certain classes
of graphs, including trees and strongly regular graphs. This
points to the fact that one potentially profitable route to im-
proving methods from spectral graph theory may reside in
graph transformation.

Unfortunately, the existing definition of the Ihara zeta
function applies only to unweighted graphs. The task of uti-
lizing the Ihara zeta function as a characterization of edge-
weighted graphs has yet to be investigated. The determi-
nant (i.e. characteristic polynomial) expression of the Ihara
zeta function is not available as a characterization of edge-
weighted graphs due to its binary representation. In this
paper, we address this shortcoming and derive a determi-
nant expression applicable to edge-weighted graphs. This
is effected with the assistance of Bartholdi zeta function.
The Ihara coefficients for edge-weighted graphs are com-
puted and the resulting pattern vectors are used to cluster
edge-weighted graphs extracted from visual objects.

2. The Ihara Zeta Function

The Ihara zeta function of unweighted graphs is a gener-
alization of the Riemann zeta function from number theory.
In the definition of the Ihara zeta function, the ’prime num-
ber’ in the Euler product expansion of the Riemann zeta
function is replaced by a ’prime cycle’, i.e. cycles with no
backtracking in a graph. As a result, the Ihara zeta function
is generally an infinite product. However, one of its ele-
gant features is that it can be collapsed down into a rational
function, which renders it of practical utility.

2.1. Rational Expression

For a graph G(V, E) with the vertex set V of cardinality
|V | = N and the edge set E of cardinality |E| = M , the

rational expression of the Ihara zeta function is [11]:

ZG(u) =
(
1− u2

)χ(G)
det

(
IN − uA + u2Q

)−1
. (1)

Here, χ(G) is the Euler number of the graph G(V, E),
which is defined as the difference between cardinalities of
the vertex set and the edge set of the graph, i.e. χ(G) =
N−M , and A is the adjacency matrix of the graph. The de-
gree matrix D is constructed by placing the column sums of
the adjacency matrix as diagonal elements, while setting the
off-diagonal elements to zero. Finally, with Ik denoting the
k×k identity matrix, Q is the matrix difference of the degree
matrix D and the identity matrix IN , i.e. Q = D−IN . From
(1) it has been shown that the Ihara zeta function is permu-
tation invariant to vertex label permutations [17]. This is
because permutation matrices, which represent vertex label
permutations in matrix calculation, have no effect on the
determinant in (1).

2.2. Determinant Expression

For md2 graphs, i.e. the graphs with vertex degree at
least 2, it is straightforward to show that (1) can be rewrit-
ten in the form of the reciprocal of a polynomial. However,
it is difficult to compute the coefficients of the reciprocal of
the Ihara zeta function from (1) in a uniform way, except
by resorting to software for symbolic calculation. To effi-
ciently compute these coefficients, it is more convenient to
transform the rational form of the Ihara zeta function in (1)
into a concise expression. The Ihara zeta function can also
be written in the form of a determinant [12]:

ZG(u) = det(I2M − uT)−1 (2)

where T is the Perron-Frobenius operator of the oriented
line graph, and is an 2M × 2M square matrix.

To obtain the Perron-Frobenius operator T, we must con-
struct the oriented line graph of the original graph from
the associated symmetric digraph. The symmetric digraph
SDG(V, Ed) of a graph G(V, E) is composed of a finite
nonempty vertex set V identical to that of G(V, E) and a
finite multiset Ed of oriented edges called arcs, which con-
sist of ordered pairs of vertices. For arc ed(u, w) ∈ Ed

where u and v are elements in V , the origin of ed(u,w) is
defined to be o(ed) = u and the terminus is t(ed) = v.
Its inverse arc, which is formed by switching the origin and
terminus of ed(u, w), is denoted by ed(w, u). For the graph
G(V, E), we can obtain the associated symmetric digraph
SDG(V, Ed) by replacing each edge of G(V, E) by the arc
pair in which the two arcs are inverse to each other.

The oriented line graph of the original graph can be de-
fined using the symmetric digraph. It is a dual graph of the
symmetric digraph since its oriented edge set and vertex set
are constructed from the vertex set and the oriented edge
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(arc) set of its corresponding symmetric digraph. The con-
struction of the vertex set VL and oriented edge set EdL of
the oriented line graph can be formulated as follows:
⎧⎨
⎩

VL = Ed(SDG)
EdL = {(ed(u, v), ed(v, w))

∈ Ed(SDG)× Ed(SDG); u �= w}.
(3)

The Perron-Frobenius operator T of the original graph is
the adjacency matrix of the associated oriented line graph.
For the (i, j)th entry of T, T(i, j) is 1 if there is one edge
directed from the vertex with label i to the vertex with label
j in the oriented line graph, and is 0 otherwise.

Unlike the adjacency matrix of an undirected graph, the
Perron-Frobenius operator is not a symmetric matrix. This
is because of a constraint that arises in the construction of
oriented edges. Specifically, the arc pair with two arcs that
are the reverse of each other in the symmetric digraph are
not allowed to establish an oriented edge in the oriented line
graph. This constraint arises from the second requirement
in the edge definition appearing in (3).

3. Ihara Coefficients for Weighted Graphs

Although (2) characterizes unweighted graphs in a com-
pact way using the determinant, when it comes to edge-
weighted graphs, i.e. the edges not only record the vertex
connections but also have attributes attached on them, then
the determinant scheme introduced in Section 2.2 is not ap-
plicable. This is because the Perron-Frobenius operator for
an unweighted graph is the adjacency matrix of the associ-
ated oriented line graph, which only bears relational infor-
mation and defaults the edge weights to binary values. This
hinders the generalization of the determinant expression of
the Ihara zeta function to edge-weighted graphs.

To characterize edge-weighted graphs, we generate the
Perron-Frobenius operator for edge-weighted graphs from
a simplified version of the Bartholdi zeta function, which
is a more sophisticated zeta function with two independent
variables. We then introduce a scheme to characterize the
edge-weighted graphs using the polynomial coefficients of
the reciprocal Ihara zeta function.

3.1. Bartholdi Zeta Function

The Bartholdi zeta function of a graph aims to generalize
the zeta function using the concept of ’prime circle’ where
backtracking is allowable. It was first introduced and devel-
oped by Barhtholdi in [3]. For a graph G(V, E), the rational
expression of the Bartholdi zeta function is:

ZGB(u, t) =
(
1− (1− t)2u2

)χ(G)×
det

(
IN − uA + (1− t)u2(D− (1− t)IN )

)−1
.
(4)

Compared with the Ihara zeta function in its rational form
(1), the rational expression for the Bartholdi zeta function
involves an additional variable t, which is closely related to
the cyclic bump count of a circle in a graph. One noteworthy
property of the Bartholdi zeta function is that when t = 0,
it reduces to the Ihara zeta function. For more details of the
Bartholdi zeta function and its relationship with the Ihara
zeta function, we refer readers to [3] and [16].

3.2. Ihara Polynomial for Edge-weighted Graphs

Based on Bartholdi’s work, Mizuno et al. [16] have
developed the following determinant expression for the
Bartholdi zeta function:

ZGB(u, t) = det (I2M − (B− (1− t)J)u))−1
. (5)

In this form the zeta function is equivalent to (4) and is
suitable for dealing with both unweighted graphs and edge-
weighted graphs. There are two 2M × 2M operators B
and J in (5), which are both closely related to the symmet-
ric digraph of the original graph. For a graph Gw(V, E)
with weighted edges, the associated symmetric digraph
SDGw(V, E) can be constructed by replacing each edge
of Gw(V, E) by the arc pair in which the two arcs are the
reverses of each other. The edge weights are then attached
to each of its generating arcs. This is similar to that adopted
in the case of unweighted graphs introduced in Section 2.2,
except that there is the additional step of weight attachment.

Based on the symmetric digraph, the elements of the op-
erators J and B can be computed as follows:

Jij =
{

1 if edi = ēdj

0 otherwise, Bij =
{

wdj if t(edi) = o(edj)
0 otherwise.

(6)
Here, t(edi) and o(edj) denote the the origin and termi-

nus of the arc edi in the symmetric digraph, respectively.
ēdj denotes the inverse arc of edi. wdj is the weight of the
oriented edge edj in the symmetric graph. It is equal to the
weight of the edge, from which the arc edj is derived, in the
original graph.

In the situation of edge-weighted graphs, when t = 0 in
(5), the determinant expression of the Bartholdi zeta func-
tion reduces to the corresponding Ihara form denoted as:

ZG(u) = det(I2M − u(B− J))−1

= det(I2M − uTw)−1 (7)

where we define Tw = B − J to be the Perron-Frobenius
operator for the edge-weighted graphs. Tw can also reason-
ably be regarded as the adjacency matrix of the oriented line
graph of the original edge-weighted graph.

There are several notes needing to be made here. First,
unlike in (3), there is no requirement on the exclusion of
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reversed arcs in the computation of the operator B in (6).
Second, the operator J literally records all the reversed arc
relations. Third, when it comes to unweighted graph, Tw

reduces to T in (2). This is because in this case B reduces to
a binary matrix representing orientations and connections
only, and the operator Tw, i.e. the difference of B and J,
naturally satisfies the all the constraints in (3). Above all,
our proposed scheme establishes a generalized version of
the Perron-Frobenius operator, which are both available to
unweighted graphs and edge-weighted graphs.

3.3. Pattern Vectors from Ihara Coefficients

To establish pattern vectors from the Ihara zeta func-
tion for the purpose of characterizing edge-weighted graphs
in machine learning, one approach is to consider taking
function samples as elements. However, if this strategy is
adopted, there will be dangers of sampling at poles, and
these give rise to infinities. Hence, pattern vectors consist-
ing of function samples are potentially unstable since the
distribution of poles is unknown beforehand.

To overcome this problem, we note that the coefficients
of the reciprocal of the Ihara zeta function, which we refer
to as the Ihara coefficients, do not give rise to infinities.

According to (7), the reciprocal of the Ihara zeta function
for edge-weighted graphs can be rewritten as follows:

Z−1
G (u) = det(I− uTw) = (u)2Mdet

(
1
u

I− Tw

)

= c0 + c1u + · · ·+ c2M−1u
2M−1 + c2Mu2M .

(8)

From (8), the Ihara coefficients c0, c1, ... c2M−1 and c2M

are actually the coefficients of the characteristic polyno-
mial of the matrix Tw. The pattern vectors characterizing
graphs are then established with Ihara coefficients as ele-
ments. This is to be contrasted with the work of Bai et al.
[1], who sample the zeta function values. The Ihara co-
efficients not only avoid the hazards of infinities that are
encountered if function samples are used, but also convey
direct information concerning graph structure and topology.

3.4. Spectral Interpretation and Computation

For unweighted graphs, the Ihara coefficients are essen-
tially graph structural descriptors on the circle frequencies
and vertex degrees [17][18]. For edge-weighted graphs, the
Ihara coefficients have no direct links with the graph struc-
ture. Here we study the Ihara coefficients for edge-weighted
md2 graphs from a spectral standpoint. We then perform a
comprehensive analysis on the effectiveness of the Ihara co-
efficients for clustering edge-weighted md2 graphs.

As stated in Section 3.2, there is always one weighted
oriented line graph associated with any weighted md2
graph. For an md2 graph, the cardinality of its vertex set is

not greater than that of its edge set, subject to the least ver-
tex degree constraint. Therefore, in practice the cardinality
of the vertex set of the oriented line graph is usually much
greater than, or at least equal to, that of the original graph.
The construction of the oriented line graph is thus a process
of transforming the original graph into a version with ad-
jacency matrix Tw in a higher dimensional space than that
of the original graph. Furthermore, the Ihara coefficients
have a strong relationship with the spectrum of the Perron-
Frobenius operator such that each coefficient can be derived
from the polynomial of the eigenvalue set {λ1, λ2 ... λn} of
Tw as follows:

cr = (−1)r
∑

k1<k2< ... <kr

λk1λk2 ... λkr
. (9)

The subscript number k in (9) runs over all possible com-
bination of the coefficient labels. The difference between
(9) and the elementary symmetric polynomials adopted in
[22] is that the Ihara coefficient cr is in fact the product of
the elementary symmetric polynomial and the factor (−1)r,
where the subscript r indicates cr the coefficient of the vari-
able to the power r. Equation (9) provides an efficient way
to compute the Ihara coefficients by enumerating the eigen-
values of a 2M × 2M matrix. This is close in spirit to the
first method for computing the polynomial coefficients sug-
gested by Brooks [5]. Moreover, it is more efficient than the
third method suggested by Brooks, which is based on com-
puting the determinant of 2M × 2M matrix

(
2M

2M−r

)
times

to obtain the coefficient cr.
The advantages of the Ihara coefficients over the Lapla-

cian spectral method are twofold. First, the graph is trans-
formed to a higher dimensional feature space. Thus the
characteristics from the Perron-Frobenius operator gener-
ally reflect more about the graph structure than graph matrix
representations in the original domain. Second, the Ihara
coefficients make use of the complete set of eigenvalues of
the Perron-Frobenius operator and they do not suffer from
spectral truncation, as does the pattern vectors consisting of
a fixed number of leading nonzero Laplacian eigenvalues.

4. Experimental Evaluation

We evaluate our proposed scheme in two ways. We first
evaluate the ability of the Ihara coefficients to distinguish
between randomly generated edge-weighted graphs under
controlled structural errors. Second, we focus on real-world
data and assess the effectiveness of the Ihara coefficient pat-
tern vectors in detecting object clusters.

4.1. Synthetic Data

We first investigate the relationship between graph edit
distance and the feature distance between Ihara coefficient
pattern vectors. The edit distance of two graphs G1 and
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Figure 1. Feature plots

G2 is the minimum edit cost taken over all sequences of
edit operations that transform G1 into G2. Therefore, if we
establish a new graph by deleting a certain number of edges
from the seed graph and if we assign each deletion an edit
cost of the deleted edge weight, the edit distance between
the two graphs is equal to the overall edit cost.

We commence with a single randomly generated md2
graph as the seed graph with 100 vertices and 300 weighted
edges. In this subsection, the edge weights are always gen-
erated so as to have a uniform distribution over the interval
[0.5, 1.5]. We obtain edited versions of the seed graph by
randomly deleting edges, with the number of deleted edges
varying from 1 to 30. For each number of edge deletions,
we perform 10 randomized edge deletion trials subject to
the md2 constraint. We compute the Ihara coefficients us-
ing (9) and construct the pattern vector in the form of vG1 =
[c3, c4, ln(|c2M−3|), ln(|c2M−2|), ln(|c2M−1|), ln(|c2M |)]T .
The final four components of the pattern vector are scaled
in a logarithmic manner to avoid unbalanced variance.
The feature distance between pattern vector vi and vj

is di,j =
√

(vi − vj)T (vi − vj), which measures the
distinction between two samples in the feature space.
Figure 1(a) plots the feature distances obtained using the
pattern vectors composed of the Ihara coefficients, versus
the corresponding graph edit distances between the seed
graph and its modified variants. The main feature to note
from the plot is that the Ihara coefficient distance generally
follows the edit distance. Moreover, for small distances
the variation of Ihara coefficient distance is approximately
linear with edit distance. For large edit distance the Ihara
coefficient distance becomes more scattered.

To take this study on synthetic data one step further,
we study the distribution of Ihara coefficient feature dis-
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Figure 2. Distance distribution

tance. We investigate two sets of graphs. The first set
consists of graphs which are obtained by randomly delet-
ing one edge from a seed graph with 100 vertices and 301
weighted edges, subject to the md2 constraint. The second
set are md2 graphs randomly generated with 100 vertices
and 300 weighted edges. Figure 2(a) shows the distribution
of the Euclidean feature distance between the pattern vec-
tors of Ihara coefficients for the first set of graphs (red as-
terisk curve) and that of the second set (black circle curve).
We can see that the modal distance between pattern vectors
for graphs with random edge edits is much smaller than that
for the structurally distinct graphs. For comparison, Fig-
ure 2(b) shows the Mahalanobis distances for the two sets
of graphs. We can see that the two sets are almost totally
non-overlapping. From Figures 2(a) and 2(b), the distance
between pattern vectors appears to provide a scope for dis-
tinguishing between distinct graphs when there are varia-
tions in edge structure due to noise.

To provide an illustration and make a more comprehen-
sive comparison with the graph spectral methods, we create
two graph sets, which are established according to differ-
ent types of graph edits separately, for experiments. Both
sets are three classes of graphs separately derived from three
seed graphs, which are again randomly generated with 100
vertices and 300 weighted edges. However, we perform two
different types of edit operations on the seed graphs to es-
tablish the two graph sets separately. The first is to ran-
domly delete eight edges at each time, and the second is
with a random number of edge deletions from one to eight
in each trial. We first perform the first type of edit opera-
tions on three seed graphs. Sixty four random trials of the
edits are performed on each of the three seed graphs sepa-
rately. Figures 1(b), 1(c) and 1(d) show the largest Lapla-
cian eigenvalue, the final coefficient of the elementary sym-
metric polynomial [22] of Laplacian spectrum (ESP’s) and
the final Ihara coefficient as a function of trial number re-
spectively. The main feature to note is that in the case of the
Ihara coefficients, the variance is smallest and there is little
overlap. The other two methods are overlapped to a more
severe degree.

We then embed the pattern vectors for the two sets of
edited graphs separately into a three-dimensional space us-
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ing principal component analysis(PCA) to evaluate their
clustering performances. We applied this procedure both to
the Laplacian spectral pattern vector consisting of the sec-
ond through to the seventh Laplacian eigenvalues, which is
one of the most effective representations for graphs, and to
the Ihara coefficient vector vG1. Figure 3 shows the experi-
mental results. Figures 3(a) and 3(b) show the clusters gen-
erated by the Laplacian spectra and the Ihara coefficients re-
spectively, subject to the first type of graph edits. Although
the spectral method appears to produce ’good’ clusters in
Figure 3(a), there are some deficiencies. First, the right two
clusters are so close that they almost merge into one. Sec-
ond, the left cluster has a non-compact ring shape and there
are no graphs near the cluster center. However, the clusters
in Figure 3(b) produced by the Ihara coefficient method are
both more compact and more separable. Figures 3(c) and
3(d) show the results for the second type of graph edits. In
this more complex situation, the Laplacian spectral method
yields clusters with considerable scattering, as illustrated in
Figure 3(c). However, for the Ihara coefficients, although
there are a small number of outlier samples (two black tri-
angles in the pink star cluster and one pink star in the green
circle cluster), the overall performance is much better and
provides the basis for a usable clustering technique.

4.2. View-based Object Recognition

We apply the pattern vectors composed of Ihara coef-
ficients to two graph datasets. The first set of graphs are
extracted from three sequences of images of model houses,
referred to as the CMU, MOVI and Chalet sequences (sam-
ples shown in Figure 4(a)). The second set of graphs are ex-
tracted from images of objects in the COIL database (sam-
ples shown in Figure 4(b)). To establish graphs we first
extract corner points using the Harris detector. Then we es-
tablish Delaunay graphs based on these corner points as ver-
tices. The established Delaunay graphs are by construction
md2 graphs. The edges are weighted with the exponential
of the negative distance between two connected vertices, i.e.
wij = exp[−k ||xi − xj ||] where xi and xj are coordinates
of corner points i and j in an image and k is a scalar scal-
ing factor. The graphs extracted from sample objects are
superimposed upon the sample images in Figure 4.

We first explore which coefficients provide the strongest
discrimination between the graphs for the different object
classes. Although the full set of coefficients associated with
a graph can be used to construct a pattern vector, only a
subset of the coefficients contribute significantly. Some co-
efficients may be redundant. Some others may reduce the
effectiveness of the clustering algorithm. We thus need to
select the subset of salient coefficients, i.e. those that take
on distinct values for different classes and exhibit small
within class variance. To do this, we compute the between-
class scatter Sb =

∑M
i=1 Ni(c̄k,i − c̄k)2 and the within-
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Figure 4. Datasets for Experiments
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Figure 5. Criterion function value

class scatter Sw =
∑M

i=1

∑
ck,i,j∈Ci

(ck,i,j − c̄k,i)2 of the
individual coefficients, where c̄k is the mean of the ck sam-
ples, c̄k,i is the mean of the ck samples in class Ci, Ni is
the number of the ck samples in class Ci and M is the to-
tal number of classes. We then use the criterion function
J = (Sb + Sw)/Sw to evaluate the performance of individ-
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Figure 6. Eigenprojection of graphs from Chalet houses
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Figure 7. Coefficient data for the COIL dataset

ual coefficients. We select the coefficients according to the
criterion that the individual coefficients making the largest
contributions to the criterion function are the most signif-
icant ones. For each of three selected objects, ten sample
images are used as training data to compute the criterion
function value. Figures 5(a) and 5(b) show the criterion
function values for the coefficients extracted from the house
dataset and the COIL dataset respectively. It is clear that the
leading few and trailing coefficients contribute more to dis-
tinguishing the objects than the intermediate coefficients.

To investigate whether the proposed scheme can learn
the structural variation within a graph class, we project the
pattern vectors onto the leading three eigenvectors of the
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(d) Ihara coefficients on COIL

Figure 8. Clusters for real-world object classes

class covariance matrix and thus embed the graphs in a pat-
tern space. We use vG2 = [c3, c4, ln(|c2M |)]T as the pat-
tern vector characterizing the edge-weighted graphs. Fig-
ures 6(a) and 6(b) show the projections of the graphs from
the Chalet images, based on the Laplacian spectra and vG2

respectively. Each point in the pattern space is marked with
a view number which corresponds to the camera angle. We
can see that the spectral method yields a trajectory hardly
tractable. However, the Ihara coefficients produce a clear
trajectory and the neighboring images in the sequence are
generally close together in the eigenspace.

Next we evaluate the performance of the pattern vectors
in distinguishing real-world graph classes. Figure 7 pro-
vides some details of the variation of the Laplacian eigen-
values, the ESP’s and the Ihara coefficients for graphs ex-
tracted from the first four COIL objects in Figure 4(b). In
these plots different colored lines correspond to different
COIL objects. In the left hand column of Figure 7, we show
coefficient values plotted as a function of view numbers for
the four objects. In the right hand column of Figure 7, we
show the coefficient mean values and standard errors for the
four objects over different views as a function of coefficient
indices. The main features to note from these plots are that
a) both the Ihara coefficients and the ESP’s are better sep-
arated than the Laplacian eigenvalues, b) there is now lit-
tle difference between the Ihara coefficients and the ESP’s.
This latter point is attributable to the highly regular nature
of the Delaunay triangulation.

We then use vG2 = [c3, c4, ln(|c2M |)]T and vG3 =
[ln(|c2M−2|), ln(|c2M−1|), ln(|c2M |)]T as the pattern vec-
tors characterizing the edge-weighted graphs extracted from
house sequences and COIL dataset respectively, and em-
bed them into a three-dimensional space using PCA. For
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Pattern Vector
Number of Object Classes
4 5 6 7 8

Laplacian Spectra 0.94 0.87 0.87 0.86 0.87
Ihara Coefficients 0.99 0.95 0.90 0.88 0.89

Table 1. Rand Indices

comparison, we use the leading three non-zero Laplacian
eigenvalues as the spectral pattern vector for the two dataset.
Figures 8(a) and 8(b) show the clusters of graphs extracted
from the house sequences, produced by the Laplacian spec-
tral method and the Ihara coefficients respectively. Fig-
ures 8(c) and 8(d) show the clusters of graphs extracted
from the first four COIL objects in Figure 4(b), produced
by the Laplacian spectral method and the Ihara coefficients
respectively. From Figure 8 we can see that the Ihara coeffi-
cients outperform the Laplacian spectral method in produc-
ing good clusters.

To take the quantitative evaluation of the pattern vec-
tors, we concentrate our attention on the COIL dataset, and
evaluate the clustering performance obtained with different
numbers of object classes. After performing PCA on the
pattern vectors, we locate the clusters using the K-means
method and calculate the Rand index for the resulting clus-
ters. The Rand index is defined as RI = Z/(Z +Y ), where
Z is the number of agreements and Y is the number of dis-
agreements in cluster assignment. It takes a value in the
interval [0,1], where 1 corresponds to a perfect clustering.
The Rand indices for the Laplacian spectral method and for
the Ihara coefficients are listed in Table 1. From Table 1
it is clear that the Ihara coefficients outperform Laplacian
spectra for all numbers of object classes studied.

5. Conclusions

We have studied how to extract characteristics from
edge-weighted graphs using the Ihara zeta function, and
have exploited the resulting characterization for the pur-
poses of clustering edge-weighted graphs. We use Ihara co-
efficients to construct pattern vectors, rather than sampling
the zeta function which associates the potential pitfall of
encountering infinities. The main contribution in this paper
is that we provide a route that allows the Ihara coefficients
to be extended from unweighted to edge-weighted graphs.
This is achieved by establishing the Perron-Frobenius op-
erator for edge-weighted graphs with the assistance of the
Bartholdi zeta function. We perform a spectral analysis that
explains why the Ihara coefficients are more effective in dis-
tinguishing graph classes than the graph spectral methods.
Experiments were conducted on both synthetic and real-
world data, and reveal not only that the Ihara coefficients
are effective for graph clustering but that they also outper-
form the Laplacian spectra in graph characterization.
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