
ACTIVE CONTOURS BASED ON CHAMBOLLE’S MEAN CURVATURE MOTION

Xavier Bresson and Tony F. Chan

Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA
xbresson@math.ucla.edu, tonyc@college.ucla.edu

ABSTRACT

This paper proposes an algorithm to solve most of existing active
contour problems based on the approach of mean curvature motion
proposed by Chambolle in [1] and the image denoising model of
Rudin, Osher and Fatemi (ROF) introduced in [2]. More precisely,
the motion of active contours is discritized by the ROFmodel applied
to the signed distance of the evolving contour. The advantage of this
new discretization scheme is to use a time step much larger than
in standard explicit schemes, which means that less iterations are
needed to converge to the steady state solution. We present results
on 2-D natural images.

Index Terms— Image segmentation, object extraction, active
contour, ROF model, signed distance function.

1. INTRODUCTION
Object extraction is one of the most fundamental issues in the fields
of image processing and computer vision. Its objective is to extract
semantically important objects from given images such as medical
structures in medical images. Promising mathematical frameworks
to solve the object extraction problem are the variational approaches
and the partial differential equations (PDEs). One well-known vari-
ational object extraction model is the active contour or snake model,
initially proposed by Kass, Witkin and Terzopoulos in [3]. This
model extracts objects in images based on the detection of edges, i.e.
locations with sharp intensity changes. Other active contour models
have been developed to detect objects with homogeneous intensity
regions.

In this paper, we propose an algorithm to solve most of existing
active contour models, based on boundary or region detection, with
the variational approach presented by Chambolle in [1]. In his pa-
per, Chambolle proposes an algorithm for mean curvature motion of
a hypersurface based on the Total Variation (TV) norm as introduced
by Rudin, Osher and Fatemi in [2] to solve the image denoising prob-
lem. We will extend his algorithm from mean curvature motion to
the most well-known active contour models.
The main contributions of this paper are as follows:
1. New formulation of active contour models based on the ROF
model,

2. Time step in the discretization segmentation flow is much
larger than in standard explicit approaches, which means that
less iterations are needed to converge to the steady state solu-
tion,

3. Applications to image segmentation with geodesic active con-
tours [4, 5], active contours without edges [6], active contours
based on the Kullback-Leigbler divergence [7] and to shape
reconstruction from a set of unorganized points [8].

This research is supported by NSF #DMS-0610079 and ONR #N00014-
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2. CHAMBOLLE’S MEAN CURVATURE MOTION
In this section, we describe the method introduced by Chambolle in
[1] to compute the generalized mean curvature motion (MCM) of
a hypersurface evolving in R

N . The mean curvature motion/flow
is one of the most fundamental PDEs used in image processing. It
is usually used in applications such as image segmentation or im-
age denoising to introduce a regularization term in order to com-
pute a steady, smooth and unique solution. The MCM basically de-
termines a family of gradually smoother versions of the original 1-
codimensional hypersurface embedded in the N-D Euclidean space.
More precisely, the MCM corresponds to the gradient flow, with re-
spect to the L2 scalar product, of the hyperarea functional which
decreases the hyperarea of a hypersurface as fast as possible by mov-
ing its boundary in the normal direction with the mean curvature as
velocity speed.

A standard approach to solve the MCM is based on the com-
putation of the Euler-Lagrange equation of the hyperarea functional∫

∂E
dHN−1, where ∂E is the boundary of a setE ⊂ R

N andHN−1

is the N − 1 dimension of the Hausdorff measure corresponding to
the length forN = 2 and area forN = 3. The Euler-Lagrange equa-
tion of

∫
∂E

dHN−1 coupled with a descent gradient method leads to
the MCM as follows:

∂Et = κNE , (1)

where ∂Et is the derivative of the hypersurface ∂E w.r.t. the arti-
ficial flow time t, NE is the normal to ∂E, κ =

∑N−1
i=1 κi corre-

sponds to the mean curvature of ∂E and κi are the N − 1 principal
curvatures. An efficient way to numerically solve the flow (1) is to
use the level set approach developed by Osher and Sethian [9], which
consists of embedding the evolving hypersurface ∂E(t) as the zero
level set of a function u(x, t) and solving the second order elliptic
PDE: ut = ∇.( ∇u

|∇u|
) |∇u|, where ut is the derivative of u w.r.t.

the time t and ∇.( ∇u
|∇u|

) is the mean curvature of constant level sets
{x : u(x, t) = λ}, λ ∈ R.

Another approach to solve the MCM has been proposed by Alm-
gren, Taylor and Wang in [10]. They propose a variational model to
discretize in time the MCM of a hypersurface. In other words, they
solve a minimization problem to compute the hypersurface at time
(k + 1)h from the surface at time kh, k ∈ N and h > 0 being the
time step of the discretized flow. They show the consistency of their
approach with smooth evolutions for the MCM but their minimiz-
ing solution is not unique given an initial hypersurface. Chambolle
propose in [1] to overcome the lack of uniqueness by defining a new
variational model, based on the ROF model and the signed distance
function of the evolving hypersurface, satisfying the monotonicity
property which is related with uniqueness. Monotonicity means that
if sets E ⊆ E′ then sets Th(E) ⊆ Th(E′), where Th(E) is a trans-
formation produced by a flow s.a. the MCM on a set E during time
h. Chambolle prove that his variational model is an approximation
of the generalized MCM in the sense of minimal barriers [1].
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The variational model introduced by Chambolle to discretize the
MCM is, for h > 0, as follows:

min
u∈L2(Ω)

FC(u) =

∫
Ω

|∇u|+
1

2h

∫
Ω

(u(x)− dE(x))2dx, (2)

where the first term
∫
Ω
|∇u|, Ω ⊂ R

N is the well-known TV-norm
of function u where ∇u is the distributional derivative of u and |.|
is the Euclidean norm in RN , Ω is a bounded open subset of RN

and dE(x) is the signed distance function of a closed set E ⊂ Ω
defined by dE(x) = d(x, E) − d(x, RN \ E), where d(x, E) =
infy∈E |x − y| is at x the smallest distance from E. It is clear
that variational model (2) corresponds to the ROF model with the
signed distance as the given image. Even though the ROF model has
been initially developed for image denoising [2], Chambolle uses
it to approximate the MCM of the boundary of the set E. Let fol-
low the development given by Chambolle. Define the transformation
Th by letting Th(E) = {x : u(x) < 0} whose u is the mini-
mizing solution of (2). Then, the Euler-Lagrange equation of (2) is
−∇.( ∇u

|∇u|
) + 1

h
(u − dE) = 0, which implies if x ∈ ∂Th(E) that

u(x) = 0 and

dE(x) = −h

[
∇.

(
∇u

|∇u|

)]
∂Th(E)

(x) = −h κ∂Th(E)(x), (3)

where κ∂Th(E) is the mean curvature of the hypersurface ∂Th(E).
If x0 is the projection of x on ∂E and N (x0) is the exterior normal
to the set E at x0, then we have x = x0 + dE(x)N (x0) and with
(3), the following equation:

x = x0 − h κ∂Th(E) N (x0),

which corresponds to the discretization of the MCM given in Equa-
tion (1), with time step h. Minimizing solution of (2) thus provides
an approximation of the MCM with time step h.

3. NEW ALGORITHM FOR SNAKES

In this section, we extend the previous work of Chambolle to the
well-known image segmentation model called snakes or geodesic/
geometric active contours (GAC). As we said in the introduction, the
snake model has been introduced in computer vision by Kass, Witkin
and Terzopoulos in [3] and then improved by Caselles, Kimmel and
Sapiro in [4] and Kichenassamy, Kumar, Olver, Tannenbaum and
Yezzi in [5]. It basically detects objects of interest in images by
deforming a curve toward object boundaries, which correspond to
sharp intensity variations, i.e. large intensity gradients. More pre-
cisely, the GAC model is a variational model which consists of find-
ing the curveC which minimizes the following geometrically intrin-
sic energy:

FGAC(C) =

∫ L(C)

0

gb(|∇f(C(s))|) ds, (4)

where ds is the Euclidean element of length, L(C) is the length of
the curve C and function gb is an edge indicator function that van-
ishes at object boundaries such as gb(|∇f |) = 1

1+β|∇f |2
, where f

is the given image and β is an arbitrary positive constant. Hence,
energy functional (4) is actually a new length obtained by weighting
the Euclidean element of length ds by the function gb which con-
tains information concerning the boundaries of objects. The calculus
of variations provides us the Euler-Lagrange equation of functional
FGAC and the gradient descent method gives us the PDE flow that
minimizes as fast as possible FGAC :

Ct =
(
gbκ− 〈∇gb,N〉

)
N , (5)

where Ct is the derivative of C w.r.t. the artificial time parameter t,
κ and N are respectively the curvature and the normal to the curve
C. The evolution equation of GAC, defined by the PDE (5), is well-
defined in term of viscosity solution [4].

We now introduce the variational model, based on the ROFmodel,
to approximate the motion of the GAC:

min
u∈L2(Ω)

F1(u) =

∫
Ω

gb(x)|∇u|+
1

2h
(u− dE)2dx, (6)

where the first term
∫
Ω

gb|∇u| is the weighted TV-norm of function
u where gb is the edge detector function of the GAC model and dE

is the signed distance function of a closed set E ⊂ Ω. We follow the
same explanations given in Section 2 to show that variational model
(6) approximate the evolution of GAC. Define the transformation Th

by letting Th(E) = {x : u(x) < 0} whose u is the minimizing
solution of (6). Then, the Euler-Lagrange equation of (6) is

−∇.
(
gb

∇u
|∇u|

)
+ 1

h
(u− dE) =

−gb∇.
(
∇u
|∇u|

)
− 〈∇gb,

∇u
|∇u|

〉+ 1
h
(u− dE) = 0,

where 〈., .〉 is the Euclidean scalar product. This implies if x ∈
∂Th(E) that u(x) = 0 and

dE(x) = −h
[
gb∇.

(
∇u
|∇u|

)
+ 〈∇gb,

∇u
|∇u|

〉
]

∂Th(E)
(x)

= −h
(
gb κ∂Th(E) − 〈∇gb,N∂Th(E)〉

)
(x),

where κ∂Th(E) and N∂Th(E) = − ∇u
|∇u| ∂Th(E)

are respectively the
mean curvature and the normal of the hypersurface ∂Th(E). If x0

is the projection of x on ∂E andN (x0) is the exterior normal to the
set E at x0, then we have x = x0 + dE(x)N (x0) and with (7), the
following equation:

x = x0 − h
(
gbκ∂Th(E) − 〈∇gb,N∂Th(E)〉

)
N (x0),

which corresponds to the discretization of the GAC motion given
in Equation (5), with time step h. Minimizing solution of (6) thus
provides an approximation of the evolution flow of GAC with time
step h.

4. NEW ALGORITHM FOR REGION-BASED ACTIVE
CONTOURS

In this section, we extend the previous segmentation model to region-
based active contours. Region-based active contours are active con-
tour models which find objects of interest in images from homoge-
neous intensity criteria such as intensity statistics. A well-known ex-
ample is the Chan and Vese model of active contours without edges
(ACWE) [6]. In this model, the active contour evolves in such a way
that the difference between the inside (respectively outside) gray-
level value and the inside (resp. outside) mean intensity value is
minimized. The evolution equation of ACWE is given by:

Ct =
(
κ + λ

(
(μin − f)2 − (μout − f)2

)︸ ︷︷ ︸
V1

)
N , (7)

where κ andN are the mean curvature and the normal to C, f is the
given image and μin, μout are the mean intensity values inside and
outside the evolving active contour.

Other statistical moments such as the variance descriptor can be
used with the active contour model to carry out the segmentation
task, see e.g. [11], but the probability density function (PDF) de-
scriptor looks to be one of the most powerful descriptors at this time,
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see e.g. [12, 7]. The active contour model developed in [7] is based
on the Kullback-Leibler (KL) divergence measure, which determines
the difference between two PDFs, and the computation of PDFs
based on the Parzen method [13]. The evolution equation of ac-
tive contours minimizing the KL difference

∫
R

qin(I) log qin(I)
qout(I)

+

qout log qout

qin
dI computed in [7] is as follows:

Ct =
(
κ + λ (νin − νout)︸ ︷︷ ︸

V2

)
N , (8)

where the two speed terms are given by:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

νin =
∫

R

1
|Ωin|

(
1− qout(I)

qin(I)
+ log qin

qout

)
·(

K(I − I(s))− qin(I)
)

dI

νout =
∫

R

1
|Ωout|

(
1− qin(I)

qout(I)
+ log qout

qin

)
·(

K(I − I(s))− qout(I)
)

dI

, (9)

where Ωin, Ωout correspond to the evolving regions inside and out-
side the active contour, |Ω·| is the area of region Ω·, K is the 1-D
Gaussian kernel and qin, qout are the PDFs inside and outside the
evolving active contour computed according the Parzen method [13]
as follows:{

qin(I) = 1
|Ωin|

∫
Ωin

K(I − I(x))dx

qout(I) = 1
|Ωout|

∫
Ωout

K(I − I(x))dx
. (10)

Evolution equations (7) and (8) extract objects in images based
on the mean descriptor and the PDF descriptor. They are composed,
as all region-based active contour models, of two terms: a regular-
ization term based on the mean curvature and a data-dependent term.
Hence, the general evolution for different kind of region-based active
contours is as follows:

Ct =
(
κ + λVr

)
N , (11)

where Vr = V1 for ACWE and Vr = V2 for active contours based
on the KL measure.

We propose the following variational model to approximate the
evolution equation of region-based active contours:

min
u∈L2(Ω)

F2(u) =

∫
Ω

gb(x)|∇u|+
1

2h
(u− dE)2 + λVru, (12)

where the edge detector function gb of Section 3 is introduced here
in order to merge the edge detection model of GAC [4, 5] with the
region-based active contours [6, 11, 12, 7] which detect homoge-
neous regions. Let show that the variational model (12) approxi-
mate the evolution of region-based active contours coupled with the
GAC model. Define the transformation Th by letting Th(E) = {x :
u(x) < 0} whose u is the minimizing solution of (12). Then, the
Euler-Lagrange equation of (12) is

−∇.
(
gb
∇u

|∇u|

)
+

1

h
(u− dE) + λVr, (13)

which implies if x ∈ ∂Th(E) that u(x) = 0 and dE(x) =

−h
[
gb∇.

(
∇u
|∇u|

)
+ 〈∇gb,

∇u
|∇u|

〉+ λVr

]
∂Th(E)

(x)

−h
(
gb κ∂Th(E) − 〈∇gb,N∂Th(E)〉+ λVr∂Th(E)

)
(x),

(14)

where κ∂Th(E) and N∂Th(E) are respectively the mean curvature
and the normal of the hypersurface ∂Th(E) and Vr∂Th(E) corre-
spond to the value of the speed function at the location ∂Th(E). If
x0 is the projection of x on ∂E andN (x0) is the exterior normal to
the set E at x0, then we have x = x0 + dE(x)N (x0) and with (14),
the following equation:

x = x0 − h
(
gbκ∂Th(E) − 〈∇gb,N∂Th(E)〉+ λVr∂Th(E)

)
N (x0),

which corresponds to the discretization of the motion of the region-
based active contours given in Equation (11) when gb = 1, with time
step h. Minimizing solution of (12) thus provides an approximation
of the evolution flow of the region-based active contours s.a. [6, 11,
12, 7] merged with the GAC [4, 5].

5. NUMERICAL SCHEMES

We show in this section how to numerically solve the evolution of the
GAC and the region-based active contours in this new framework.
As explained by Chambolle in [1], given an initial set E0 ⊂ Ω,
h > 0, then for every t > 0, the boundary of the following set:
Eh(t) = (Th)[t/h](E0) where [.] is the integer part and Th are the
transformation defined in Sections 2, 3 and 4, converge when h → 0
to the evolution equation of the GAC and the region-based active
contours.

From a numerical point of view, it means that the active contour
at time (k + 1)h, k ∈ N is given by the zero level set of the function
u obtained by iterating the two following steps, given u = dE0

at
k = 0:
1. computation of the signed distance function dE from the zero
level set of the function u at time kh,

2. solving variational problem (12) to get u at time (k + 1)h.
The signed distance function of a set E is computed with the

fast-marching algorithm developed in [14]. The minimization prob-
lem (12) is solved by introducing a convex regularization of the vari-
ational problem (12) as follows:

min
u,v∈(L2(Ω))2

F r
2 (u, v) =

∫
Ω

gb(x)|∇u|+
1

2h
(u− dE)2

+λVrv +
1

2θ
(u− v)2,

where v is a new function with parameter θ > 0. Since Functional
F r

2 is convex, its minimizer can be computed by minimizing F r
2

w.r.t. u and v separatively and iterating until convergence. Thus, the
following minimization problems are considered:
1. v being fixed, we search u as a solution of:

min
u

∫
Ω

gb(x)|∇u|+
1

2h
(u− dE)2 +

1

2θ
(u− v)2, (15)

2. u being fixed, we search v as a solution of:

min
v

∫
Ω

λVrv +
1

2θ
(u− v)2. (16)

The solution of (15) is also given by this minimization problem:

min
u

∫
Ω

gb(x)|∇u|+
1

2α
(u− w)2, w =

θdE + hv

h + θ
, α =

h + θ

hθ
,

which is a ROF model coupled with the TV-norm weighted by the
edge detector function gb whose solution is given in [15] by

u = w − α div p,

where p = (p1, p2) is given by the fixed point method: p0 = 0 and

pn+1 =
pn + δt∇

(
div pn − w/α

)
1 + δt

gb(x)
|∇

(
div pn − w/α

)
|
, n ∈ N.

The solution of (16) is given by: v = u + θλVr .
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6. RESULTS

We present some results and outlines the advantage of this new frame-
work to solve the active contour problem. In the proposed work, the
time step h of the discretized motion of active contours [4, 5, 6, 11,
12, 7] is not restricted to small values like in standard explicit dis-
cretization schemes usually used to carry out the minimization task.
In our approach, the time step h can be larger, which means that less
iterations are needed to converge to the steady state solution.

As a first example, we apply the GAC model, developed in Sec-
tion 3, to the image given on Figure 1. We introduce the traditional
balloon force to the GAC model, which can be done with Section
4 choosing Vr = ct.gb(x), ct > 0. The time step is taken equal
to h = 200 and the number of iterations needed to converge to the
steady state solution is 24, which at least 10 times less than the ex-
plicit scheme. Then, we apply the ACWE model, developed in Sec-
tion 4, to the medical image given on Figure 2. The time step is
h = 100 and the number of iterations is 8 (standard scheme takes 10
times more of iterations). We apply the active contour model based
on the KL divergence measure, developed in Section 4, to the zebra
image given on Figure 3, where the ACWE can not segment the tex-
tures. The time step is h = 100 and the number of iterations is 8
(standard scheme is also 10 times longer). Finally, the GAC model
is applied to the problem of shape reconstruction from unorganized
points [8] on Figure 4. We extract some points on the brain ventricle
and its shape is reconstructed with the model developed in Section
3 choosing gb(x) = d(x, G), G being the set of points and d the
distance function.

(a) Initial Position. (b) # Iterations = 10. (c) # Iterations = 24.

Fig. 1. GAC Model [4, 5] with a Balloon Force.

(a) Initial Position. (b) # Iterations = 3. (c) # Iterations = 8.

Fig. 2. ACWE Model [6].

(a) Initial Position. (b) # Iterations = 2. (c) # Iterations = 8.

Fig. 3. Active Contour Model based on the KL Divergence [7].

(a) Set of Points. (b) Distance Function
of Set of Points.

(c) Shape Reconstruc-
tion.

Fig. 4. GAC Model [4, 5] applied to Shape Reconstruction.
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