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ABSTRACT

In this paper, we propose a variational framework which com-
bines top-down and bottom-up information to address the chal-
lenge of partially occluded image segmentation. The algo-
rithm applies shape priors and divides shape learning into
shape mode clustering and non-rigid transformation estima-
tion to handle intraclass and interclass coarse to fine varia-
tions. A semi-parametric density approximation using adap-
tive meanshift and Lo F robust estimation is used to model
the likelihood. A set of real images is used to show the good
performance of the algorithm.

Index Terms— Image Segmentation, Shape Modeling,
Density Approximation

1. INTRODUCTION

Active contour models [1] have been widely used since their
introduction. Currently many efforts are focused on object-
based segmentation using shape priors. Leventon et. al [2] ap-
plied principle component analysis (PCA) to obtain training
shape modes and presented them as signed functions. Dambre-
ville et. al [3] applied kernel PCA for shape learning in geo-
desic active contour models. Cremers et. al [4] introduced
shape priors into the level-set formulation, where the trans-
formation and rotation parameters depend upon the level-set
function ¢. Shape symmetry information has been used in the
level-set framework in [5] on symmetric object segmentation.

In this paper, we exploit the idea of introducing shape pri-
ors into active contour models but using a coarse to fine shape
learning approach. We apply the algorithm to address the
challenge of partially occluded image segmentation. The de-
formable model we present is based on the Bayesian rule and
numerically implemented using level-set. Adaptive meanshift
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clustering [6] and Lo E' robust estimation [7] are used to per-
form likelihood density approximation. The Elliptical Fourier
Descriptor (EFD) [8] is applied on the training shapes fol-
lowed by an agglomerate clustering to determine the shape
modes. Non-rigid transformation estimation is used to align
the shape mode to the edge of the testing image’s likelihood
map.

What distinguishes our work from previous ones are: we
propose 1) 4 novel coarse to fine shape model, which divides
the shape learning into EFD shape clustering and non-rigid
transformation estimation. The coarse intraclass variations
are captured by the learned shape modes while the fine inter-
class variations are addressed by the non-rigid transformation
estimation; 2) A novel semi-parametric density approxima-
tion method. Considering the trade-off between accuracy and
storage, we apply adaptive mean-shift and Ly E robust esti-
mation for density approximation. The likelihoods and the
shape priors are tightly coupled into the level-set framework
which provides smooth boundaries and can handle topologi-
cal changes by its nature.

2. FEATURES AND SHAPE CLUSTERING

2.1. Features

The Luwv colors and textures are used to describe the bottom-
up information which is extracted using a set of linear filters
- filter banks. We modified the M R filter bank [9] to com-
pute the filter response. The feature vector is composed using
two LoG filter responses on the L channel with o = 1, 2, six
Gaussian filtering responses on the L, v and v channels with
o =1, 2 and the M R maximal bar and edge response within
six different directions, § = 0,7/6,7/3,7/2,2x/3,57/6,
with ¢ = 1,2 and 4. In total, each image pixel is repre-
sented by a 10 dimensional feature vector. Figure 1 shows the
filtering results after applying the proposed filter bank to one
testing image.
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Fig. 1. The filtering response using our modified M R filter
bank.

2.2. Elliptic Fourier Descriptor (EFD) Based Shape Clus-
tering

For each human-delineated contour, we apply Elliptic Fourier
Descriptor (EFD) [8] to calculate the Fourier coefficients and
use the first eight normalized harmonics. Each harmonic con-
tains four coefficients. Agglomerative clustering was applied
on the set of the coefficients to determine the cluster cen-
ters, which best represent the shape modes. The advantages
of using the EFD are: 1) The EFD is a good measure for
global properties of shapes, which is preferred in our algo-
rithm because small interclass variations are handled by non-
rigid transformation estimation. This is explained in detail in
section 3.3; 2) The normalized EFD descriptions are invariant
to rotation, translation and scaling. Fig 2 shows the six shape
modes of tigers reconstructed using 8 * 4 EFD coefficients.

3. SEGMENTATION FRAMEWORK

3.1. Bayesian Segmentation Model

Define f € F in R¢ as the random variable describing the
feature vector, where F is the set of all features and d is the
dimension of the feature space. In order to build the connec-
tion between the image partition and contours, we define a
partitioning operator ¢ with (1) describing the partition of
image /. According to Bayesian rule, the segmentation can
be modeled as the maximum a posterior (M A P) estimation

p(O(ID)|f) o< p(f19(1))p(I(1)) M

where p(f|9(I)) is the likelihood of bottom-up features f
given ¥(I). The p(¥(I)) is the prior probability of the image
partition which is used to model the shape priors. The final
P(I) can be solved by maximizing the posterior probability

P f)-

Fig. 2. Some "ground-truth" contour examples of tiger im-
ages.

3.2. Kernel Based Density Approximation Using Adap-
tive Mean Shift and L, £ Robust Estimation

In order to calculate the posterior probability p(H(I)|f), we
need to compute the likelihood p(f|¥(I)). Given the likeli-
hood p(f|¥(I)) to be an arbitrary density function, kernel
density estimation (KDE) is often used. The flexibility to rep-
resent any complicated probability density is KDE’s major
advantage. On the other hand, the high memory usage and
computational complexity limit its practical use.

In this paper, we propose to model the likelihood p( f|¢#(1))
using a semi-nonparametric approximation which is the linear
combination of M Gaussian distributions. We show that den-
sity approximation using adaptive mean-shift and Lo E robust
estimation performs almost as well as KDE but requires far
fewer parameters. The semi-nonparametric Gaussian mixture
model (GMM) is distinguished from the normal GMM be-
cause the mean, variance, weights and number of Gaussian
distributions are not known in advance. The likelihood is

Q; eXp (—%(f - fi)zfl(f - fi)/)

_1/2
i=1 2dgd/2 ’Ez)

(@)

where ¢ = 0, ..., N denotes the total number of points in the
image. The «; is the weight of the ith Gaussian, Normal(f;
, 2;). The sum of «; is equal to one. Assume that after apply-
ing adaptive mean-shift based mode detection, there is totally
M unique modes with weights &; as the proportion of the
number of points in the ith cluster, where E is the station-
ary mode point. The Lo E robust estimation can be applied to
estimate the variance X3;
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Fig. 3. The standard KDE and our proposed semi-parametric
density approximation results upon a six Gaussian mixture
density.

where j = 1...m is the points in the 5tk cluster and ¢(f; \E, f)i)

is defined as
( (é<fﬁ>iﬁ(fﬁ>’)>
exp | —
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The final density approximation can be written as
M @& exp (—%(f —E)f];l(f —E)/)
p(E9(D) =) —7 (6)
i=1 2dgrd/2 ’E,’

In stead of keeping all the IV sets of parameters in (2),
the likelihood p(f|¥(I)) is modeled using M sets of para-
meters and M < N. We test our density approximation
method on a range of densities and it provides similar pdf as
the KDE result using much less storage space. Fig 3 shows
an example. The original six mixture Gaussian distributions
and the modes detected by the adaptive mean-shift algorithm
are shown in upper-left and upper-right of Fig 3. The bottom-
left is the standard KDE using Epanetchnikov kernel. The
bottom-right illustrates the our semi-parametric density ap-
proximation. The testing image’s likelihood maps are gener-
ated using a Bayesian classifier over the learned pdf calcu-
lated using (6).

3.3. Shape Alignment

Based on EFD clustering, we can calculate the shape modes
for each object class. However, the shape modes shown in
Fig 2 can not be used directly as shape priors in the level
set framework without alignment. Therefore, a mapping T’

I-39

which aligns the shape mode to the edge of the testing image’s
likelihood map has to be computed.

In order to determine the transformation 7', gradient de-
cent is used during each iteration of the level set function in
[10] and on the nested Euler-Lagrange equations in [4]. One
common problem of these methods is their assumptions of
affine or even rigid mapping 7. Instead, we generalize 1" to be
the thin plate spline (TPS) transformation [11]. Affine trans-
formation has proven to be a special case of TPS. Given two
point sets, the TPS is estimated by minimizing

Brps =Y |IT(w;) — vil|* + My 7
where
2f\> PFN\> 9%\
b () w2 (o) + (30) ] e
(®)

with w; denote the points on the training shape modes and v;
denote the points on the edges of the calculated testing im-
age’s likelihood map.

Because 7' is a nonrigid mapping which has infinite num-
ber of solutions for the first term in 7, the smoothness term
Al is used to regularize the ambiguity. Each shape mode is
matched to the edges of the testing image’s likelihood map by
minimizing (7). The final mapping 7" is computed using the
shape mode with the minimal matching error.

3.4. The Variational Framework

Define C' as the contour to separate the object from the back-
ground, p(C) describes the shape prior of the object. We cal-
culate the non-rigid transforms 7" with the minimal matching
error and use T'(C) to denote the aligned shape prior. Define
Y(I,,y) as the labeling of the xth column and yth row of the
original image and € /€ as the region in which I, ,, locates
inside/outside 7'(C)). Denote label -° as the object and -Yas
background and pos, , as the coordinates. Because the pix-
els inside the aligned shape T'(C') have more chances to be
labeled as object, the p(¥(I)) in equation (1) can be linked
with p(C') using the softmax function and signed Chamfer
distance

o 1
P (L)) 1+ exp(—dist(z,y, T(C)))’
p(0°(Iy)) = 1—p(°(L.y)) Q)
where

dist(z,y,T(C))=min ||pos; , — T(C)|| ony,

dist(z,y,T(C))=—min||posg,, —T(C)|| on Qy  (10)

The maximization of equation (1) is equal to minimize
its negative logarithm. Rewriting (1) in the energy integral
equation and extending the approach in [1]
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where the u(¢(x, y) is the heaviside step function defined
asu(t) =1 (1+ Zarctan (£)). They > 0 is used to adjust
the effect of the length of the contour C. The A1, Az, A3, A\g
> 0 are used to adjust the weights of the bottom-up informa-
tion and the top-down shape constraints. The minimization is
performed using the Euler-Largrange equation with the gra-
dient of the embedding function ¢ defined as

a1 =0 (20 (1))

+ () (A2 log p(f10° (1)) — Ay log p(f£19°(I)))
+ () (M log p(9°(1)) — Az logp(¥°(1)))  (12)

where §(¢) = u'(¢). For all the experiments we use v = 0.01
and all the )\ are set to be 1.

4. EXPERIMENTS

In the limited space available here, we describe the perfor-
mance of our algorithm on a set of tiger images taken from
COREL database [12] and GOOGLE search. Two types of
occlusions are shown here. In Fig 4a, the tree which blocked
part of the tiger is mislabeled as object; the man-made white
strip which divides the whole tiger into two parts is shown
in Figdd. The segmentation results without shape priors are
shown on Figdb and Figde. Applying the shape priors calcu-
lated using EFD shape clustering and non-rigid transforma-
tion estimation, more accurate results are obtained in Figdc
and Fig4f for both cases. In total, we use 15 tiger images
for likelihood density approximation/shape clustering in the
training stage and 20 partially occluded images for testing.
The overall pixel-wise segmentation accuracy we obtained is
91.27%. Note that without applying shape prior the accuracy
dropped to 85.01%.

5. CONCLUSION

In this paper, we propose an effective algorithm and apply it
on the partially occluded image segmentation. The MATLAB
implementation is completed in 20 seconds on a 192 x 128 im-
age using a PC with P4 1.5G and 2 G memory. The speedup
of the level-set evolution is due to the rough initial position
provided by the aligned shape prior and bottom-up segmenta-
tion. The algorithm can be further optimized using C++.

I-40

@ © T

Fig. 4. The image segmentation results of two occluded tiger
images.
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