
COUPLED HIDDEN MARKOV MODELS FOR ROBUST EO/IR TARGET TRACKING

Jiading Gai, Yong Li, Robert L. Stevenson

Department of Electrical Engineering, University of Notre Dame
275 Fitzpatrick Hall, Notre Dame, IN 46556

{jgai, yli5, rls@nd.edu}

ABSTRACT

Augmenting Electro-Optical (EO) based target tracking sys-

tems with Infrared (IR) modality has been shown to be ef-

fective in increasing the accuracy rate of the tracking sys-

tem. A key issue in designing such a multimodal tracking

system is how to combine information observed from differ-

ent sensor types in a systematic way to obtain desirable per-

formance. In this paper, we present an investigation into in-

tegrating EO and IR sensors within Hidden Markov Model

(HMM) based frameworks. We propose to use a Coupled

Hidden Markov Model (CHMM) to improve upon the exist-

ing fusion schemes. Another contribution is that we propose

to use a robust t-distribution based subspace representation in

the CHMM to model appearance changes of the target. Nu-

merical experiments demonstrate that the proposed CHMM

tracking system has improved performance over other inte-

gration schemes for situations where the target object is cor-

rupted by noise or occlusion.

Index Terms— Coupled hidden markov model, target track-

ing, subspace representation, t-distribution, CONDENSATION

algorithm

1. INTRODUCTION

Force protection, intelligence gathering, and targeting sys-

tems all use sensors to track interesting targets and collect

necessary information about the environment so that intelli-

gent decisions can be made about proper course of action. In

most systems a single sensor type (i.e., EO) is utilized. While

the visible spectrum is a major source of target information,

the infrared spectrum is considered to be a useful supplemen-

tary source for providing a better sensing in various condi-

tions [1].

Single sensor based target tracking systems work well for

many applications, but their performance degrades consider-

ably when the EO sensor has the similar response to the tar-

get and to the background (for example, when the target ob-

ject wears a camouflage suit.) Limited success using a single

sensing technology for object tracking opens the questions of

how to utilize infrared sensor effectively to complete the task.

Several methods have been proposed on the fusion of EO/IR

sensors for object tracking. Conaire et al. [2] combines vis-

ible and infrared spectrum data to maintain a nonparametric

background model. The target region in each frame is iden-

tified by comparing the current frame with the background.

This algorithm transforms an object tracking problem into an

object detection problem and fails to incorporate temporal in-

formation. Goubet et al. [8] provides an update to up survey

on this line of research. Kang et al. [1] formulates EO/IR

tracking as a joint maximization of a set of probability mod-

els using joint probability data association filter. Since the

authors do not assume the Markov property for the hidden

states, the algorithm has high computational load. Leykin et

al. [3] formulates the multimodal tracking problem under the

well-known HMM. HMM provides a powerful framework to

incorporate temporal information and multiple cues. The au-

thors use a combined color input observed from EO and IR

sensors as features for tracking. The fusion scheme forms

composite EO/IR feature vectors by simply concatenating the

vectors from each sensor and the multimodal tracking is per-

formed in the combined feature space. One disadvantage of

integrating EO/IR sensors using the plain HMM is that the

system becomes very sensitive to sensor alignment error.

Based on the analysis above, we propose the use of cou-

pled hidden Markov models (CHMM) to model the interac-

tion between the EO and IR modes through time (See Fig. 1).

The CHMM was first introduced by Brand [6] to capture the

interprocess influences across time in the systems of multiple

interacting processes. The CHMM brings in the robustness

against sensor alignment error by treating each sensor as a

subsystem. The two subsystems are then coupled by bridg-

ing the states of both sensors, i.e., each hidden state at time t
has a transition distribution parameterized by the two hidden

states from both the EO and IR sensors at time t − 1. This

offers an ideal framework for closely coupling of the EO and

IR sensors.

Another distinguishing point of our work is that we pro-

pose to use a robust t-distribution based eigenspace represen-

tation to reflect the appearance changes of the target and to

model the observation distribution in the CHMM. In our pre-

vious study [4], we show how replacing a Gaussian distri-

bution based subspace representation (i.e., probabilistic prin-

cipal component analysis) with a robust t-distribution based

I - 411-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007



Fig. 1. A grahical model for the proposed CHMM.

subspace representation can help achieve a better outlier re-

jection mechanism and improve robustness of the unimodal

tracking systems. Here, we adopt this robust subspace repre-

sentation into our multimodal tracking framework. Another

reason for selecting robust eigenbasis as features for track-

ing is that, arguably, dense features are more robust for object

tracking in non-ideal situations than sparse features such as

points, edges and contours, since in dense features every lo-

cation within the target region gets to contribute to the final

decision, as contrast to the sparse features where only a small

portion of pixels are exploited.

2. EO/IR TARGET TRACKING WITHIN THE CHMM
FRAMEWORK

We assume that the data from the two sensors has been syn-

chronized in time properly prior to tracking. Each modality

is modeled with an HMM. The hidden states {XEO
t , XIR

t }
describe the motion and position parameters of the target in

the EO and IR sensors respectively at time t. The states of the

two HMMs are coupled in time through conditional probabil-

ities between the hidden state variables p(XEO
t |XEO

t−1, X
IR
t−1)

and p(XIR
t |XEO

t−1, X
IR
t−1). {IEO

t , IIR
t } represent the target

appearances observed from the two modalities.

Given a set of the observed target images {IEO
i , IIR

i }t
i=1

from the two sensors, we recursively update the posterior dis-

tribution p(XEO
t , XIR

t |{IEO
i , IIR

i }t
i=1) over the state vari-

ables XEO
t , XIR

t as follows:

p(XEO
t , XIR

t |{IEO
i , IIR

i }t
i=1) ∝ p(IEO

t , IIR
t |XEO

t ,

XIR
t )

∫
p(XEO

t , XIR
t |XEO

t−1, X
IR
t−1)p(XEO

t ,

XIR
t |{IEO

i , IIR
i }t−1

i=1)dXEO
t−1dXIR

t−1. (1)

According to the dependence structure encoded in the graph-

ical model of our CHMM framework, the observation model

p(IEO
t , IIR

t |XEO
t , XIR

t ) can be written as:

p(IEO
t , IIR

t |XEO
t , XIR

t ) = p(IEO
t |XEO

t )p(IIR
t |XIR

t ). (2)

The tracking process is also governed by the motion model

p(XEO
t , XIR

t |XEO
t−1, X

IR
t−1), which predicts the hidden states

at time t given the previous states. The motion model can also

be factorized accordingly as:

p(XEO
t , XIR

t |XEO
t−1, X

IR
t−1) = p(XEO

t |XEO
t−1, X

IR
t−1) ·

p(XIR
t |XEO

t−1, X
IR
t−1). (3)

The dynamics of motion of the moving object is approxi-

mated by an affine image warping [7] and the state variable

Xt = (xt, yt, θt, st, αt, φt) describes the translation, rota-

tion angle, scale, aspect ratio and skew direction of the tar-

get motion at time t in each sensor. The motion models are

set to be a mixture of Gaussian distribution parameterized by

XEO
t , XIR

t :

p(XEO
t |XEO

t−1, X
IR
t−1) = λ · N(XEO

t ; XEO
t−1, Ψ

EO) +

(1 − λ) · N(XEO
t ; XIR

t−1, Ψ
IR),

p(XIR
t |XEO

t−1, X
IR
t−1) = λ · N(XIR

t ; XIR
t−1, Ψ

IR) +

(1 − λ) · N(XIR
t ; XEO

t−1, Ψ
EO).

where ΨEO, ΨIR are taken to be diagonal covariance ma-

trices to reduce the number of parameters that need to be es-

timated. N(·) denotes the Gaussian density function. λ is set

to 0.6 in our simulation.

The construction of the observation model merits a de-

tailed explanation. Since each modality maintains its own

observation distribution of the same mathematical form, we

choose not to highlight sensor types in the derivation below.

As we pointed out in our previous study [4], classic gaussian

based eigenspace representation (a.k.a. probabilistic princi-

pal component analysis) has robustness issues with respect to

atypical observations. Based on the fact that true data with

numerous outliers exhibit ”heavy tails”, we proposed to use a

robust t-distribution based eigenspace representation instead.

The t-distribution has a heavier tail than Gaussian. The thick-

ness of its tail is regulated by the degree of freedom parameter

v. Gaussian distribution is a special case of the t-distribution

when v goes to infinity. So the robust eigenspace representa-

tion is a generalized version of the classic one.

The latent variable model that we use to describe the ro-

bust eigenspace representation is:

It = WYt + μ + εn, (4)

where It is the observed target image of size D × 1 in

raster-scan format; W is a D × d projection matrix that re-

lates It and Yt. The columns of W encode the first d princi-

pal components of the image set of the target appearance up

to the time t; Yt is a latent variable; μ is the mean and εn

is the noise term. Yt is the decomposition coefficients of the

target image (determined by Xt) in the current robust eigen-

basis. To simplify our derivation, we use an auxiliary random
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variable wt ∼ Γ( v
2 , v

2 ) and define the following conditional

probabilities:

p(Yt|wt) = N(0,
Id

wt
), (5)

p(It|Yt, wt) = N(WYt + μ,

∑
wt

), (6)

where Id is a d-dimensional identity matrix,
∑

is a diag-

onal covariance matrix.

Using (4)-(6), the observation model p(It|Xt) is com-

puted through proper integration [9, 10]:

p(It|Xt) =
Γ( v+D

2 )|WW
′
+

∑ |−1/2(vπ)−D/2

Γ(v
2 )

·
(

(t − μ)
′
(WW

′
+

∑
)−1(t − μ)

v
+ 1

)(− v+D
2 )

, (7)

where (·)′ is the matrix transpose.

Note that p(It|Xt) is a t-distribution with mean μ, covari-

ance matrix WW
′
+

∑
and the degree of freedom v.

3. FITTING THE PROPOSED CHMM WITH EM
ALGORITHM

Each iteration of the proposed EO/IR tracking algorithm oper-

ates in two stages, starting with estimation of the position and

appearance of the target at the current frame and concluding

with parameters update for the robust subspace representa-

tion. In this section, we focus on how to estimate a set of val-

ues for the CHMM parameters that best represents the set of

tracked target images up to the current frame. The model pa-

rameters are {μ, v,
∑

, W}. The maximum likelihood estima-

tion (MLE) of {μ, v,
∑

, W} is obtained using Expectation-

Maximization (EM) algorithm by maximizing the expected

complete data log-likelihood [11, 4].

The expectation quantities needed to compute the new set

of parameters in the M-step are given by:

wt =
v + D

v + (It − μ)′M(It − μ)
, (8)

wtYt = (W
′
ΣW + Id)−1W

′
Σ−1(It − μ)wt, (9)

wtYtY
′
t = (W

′
ΣW + Id)−1 + wtwtYt(wtYt)

′
, (10)

log wt =
dΓ(α)

dα
|α= v+D

2
· 1
Γ(v+D

2 )
−

log
v + (It − μ)

′
M(It − μ)

2
, (11)

where � =EYt,wt|It,{μ,v,
∑

,W}[�], M = (WW
′
+ Σ)−1.

In the M-step, the expected complete log likelihood is

maximized with respect to {μ, v,
∑

, W}. This gives the up-

date rules for the model parameters:

μ =
∑T

t=1 wtIt −
∑T

t=1 W (wtYt)∑T
t=1 wt

, (12)

W = (
T∑

t=1

Σ−1(It − μ)wtY
′
t )(

T∑
t=1

YtY
′
t wt)−1, (13)

Σ =
1
T

T∑
t=1

diag{(It − μ)(It − μ)
′
wt

−2WwtYt(It − μ)
′
+ W (YtY

′
t wt)W

′}, (14)

v = arg maxv{
Nv

2
log

v

2
− N log Γ(

v

2
)

+(v − 2)
T∑

t=1

log wt −
T∑

t=1

vwt}, (15)

where T denotes the index of the current frame, diag(A) de-

notes the diagonal matrix consisting of the diagonal elements

of A.

Note that, in practice, we need to bound the maximization

of v in (15). v has to be greater than zero and less than certain

maximum degrees of freedom whose value depends on the

data.

4. INFERENCE IN THE CHMM

We use the CONDENSATION algorithm to perform an ap-

proximate inference in the CHMM. The CONDENSATION

algorithm [12] is a well-known sequential Monte Carlo method

for approximating Bayesian inference, where the posterior

probability is recursively approximated with a randomly gen-

erated set of weighted samples, called particles. We use 300

particles sampled from p(XEO
t , XIR

t |XEO
t−1, X

IR
t−1) and weighed

by p(IEO
t , IIR

t |XEO
t , XIR

t ) to approximate the posterior prob-

ability p(XEO
t , XIR

t |IEO
t , IIR

t ). A new set of particles is

generated from the current set by random sampling propor-

tionally to these weights. The optimal solution for {XEO
t , XIR

t }
is approximated by the strongest mode of the particle distri-

bution.

5. RESULTS

In this section, we report results that demonstrate the supe-

riority of the proposed CHMM framework over the existing

fusion schemes for EO/IR tracking.

The data was collected by a pair of fixed cameras at in-

frared and visible wavelengths respectively. The sensors were

roughly aimed at the same scene. The multimodal data se-

quences were pre-registered using homography with invari-

ant features across sensors. In the video sequences, a person
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Fig. 2. EO/IR tracking w.r.t partial occlusion. Tracking re-

sults are shown from left to right, top to bottom.

Fig. 3. Tracking acurracy compared to ground truth.

is getting partially occluded by a street lamp as time goes by.

The target region reappears after the occlusion is passed. In

Fig. 2, experiment illustrates that our CHMM scheme pro-

duces robust tracking results despite occlusion. In Fig. 3, us-

ing the same sequence, we compared the results from the pro-

posed CHMM based tracker against the fusion scheme that

ignores the states coupling between the two sensors (i.e., the

scheme that treats the EO and IR sensors as two independent

hidden Markov processes. The fusion only takes place at the

decision level.) Since the target is travelling at a constant

speed, the ground truth positions can be easily marked and

also included in the comparison. The occlusion begins at the

158th frame and ends at the 167th frame.

6. CONCLUSION

In this paper, we proposed a new CHMM framework targeted

at closely coupled EO/IR multimodal tracking. The image

sequences acquired by the two sensing modes are modeled

as two hidden markov processes. The states of the different

HMMs are bridged together to form a CHMM. To ensure the

robust performance of our system, we further develop a t-
distribution based subspace representation to cope with vari-

ous outliers. Experiments on real-world sequences show an

obvious improvement in terms of tracking accuracy.
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