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ABSTRACT

We propose a new automated Region Growing method In-

tegrating Shape Prior (RGISP). The aim of this work is to

improve region growing segmentation by taking into account

a reference model. Our algorithm is assessed on a synthe-

sized image and compared with two other methods in order to

point up the contribution of shape prior. It was also applied to

segment in-vivo μ-CT images of mouse kidneys in the frame-

work of small animal imaging. RGISP gives promising re-

sults and appears to be well adapted to satisfy small animal

imaging constraints.

Index Terms— Image processing, image segmentation

1. INTRODUCTION

Segmentation is an important step in medical image process-

ing for feature extraction and quantitative analysis of physio-

pathologic phenomena. The aim of this process is to retrieve

automatically anatomical structures of interest. Since its in-

troduction by Zucker et al. [1], region growing has become a

popular method for 3D segmentation. Starting from a seed,

manually or automatically located, the iterative process of re-

gion growing consists in extracting a region of interest by

merging all the neighboring pixels that satisfy some aggre-

gation criterion. This region-based approach relies upon low

level features of image such as grey levels of pixels and norms

of intensity gradients. Nonetheless, this information is often

not sufficient to segment accurately a whole object. Indeed,

the performance of region growing is inherently limited, be-

cause it is impossible to dissociate connected structures hav-

ing similar intensities or statistics. To face this problem, addi-

tional information must be taken into account during growth

such as geometrical constraints or shape prior.

Only few authors integrated geometric prior in region grow-

ing. Demeshki et al. [2] compute the shape index of each

voxel from an approximation of the boundary of the evolving

region. The region growing takes into account the character-

ization of the topological shape of each voxel. The extracted

feature enables separating the desired object from other con-

nected objects that have different shapes but the same inten-

sity value. In the framework of the level set method, shape

prior is classicaly represented by a distance map [3, 4] based

on signed distance.

In this work, our main contribution is to improve the perfor-

mance of the region growing approach by taking into account

shape information through distance map. This prior informa-

tion enables a correct segmentation in spite of noise effect

or corrupted data. In section 2, we present our 3D region

growing method integrating shape prior. In section 3, we test

our algorithm on a synthesized image. We analyze the results

and point up the contribution of shape prior. In section 4, we

present some results of RGISP applied in the framework of a

small animal imaging.

2. RGISP METHOD

2.1. Principle of RGISP

The main objective of this work is to integrate global shape in-

formation in the process of region growing. This prior knowl-

edge is given by a 3D reference model. Thanks to this refer-

ence, it is enabled to assess a geometrical distance between

the boundaries of the evolving region and the model. This

term is integrated in the process of region growing as a shape

prior. Thus, the growing region is attracted by a force near

the solution and is not stopped by a possible extremum in-

side object. As region growing is governed by an aggregation

criterion, the resulting segmentation usually depends on the

threshold value fixed for this criterion. Within RGISP, the op-

timal threshold is determined automatically by scanning the

decreasing values of the threshold until the mean intensity

gradient over the whole boundary of the segmented object is

maximized [5] while the mean distance to the reference model

is minimized.

2.2. Shape prior

We note I , a 3D image defined on the domain Ω, x ∈ Ω a

voxel of the image and I(x) the grey level value of x.

Let Rin be the evolving region and Rref the reference region.

The boundaries of Rin and Rref are denoted by Γ and Γref

respectively. In biomedical imaging, shape prior may stem

indifferently from various origins. For example, the reference
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contour Γref may be initialized from a numerical atlas, it may

be either defined interactively by an operator, or deduced from

a previous segmentation of a reference image. Nonetheless,

we assume in our work that the reference model is already

affine registered with the data to segment.

We note d(x,Γref ) the signed Euclidean distance between a

voxel x and the reference contour Γref defined in (1):

d(x,Γref ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 , x ∈ Γref

− min
y∈Γref

(d(x, y)), x ∈ Rref − Γref

+ min
y∈Γref

(d(x, y)), x ∈ Ω− Rref

(1)

where d(x, y) is the Euclidean distance between two voxels

x and y. By definition, d(x,Γref ) is equal to the signed dis-

tance from x to the nearest voxel belonging to the reference

boundary. Once and for all, d(x,Γref ) is computed for each

voxel of the image and stored in a distance map [6]. A neg-

ative (resp. positive) value indicates that the voxel is inside

(resp. outside) the reference region. In order to be less depen-

dent on the size of the object to segment, the distance map is

normalized by the absolute value of the minimum signed dis-

tance. In next section, we detail how this shape prior is taken

into account in the aggregation criterion.

2.3. Aggregation criterion

The process of growth in RGISP is standard. The merge of

a pixel to the evolving region is governed by an aggregation

criterion which must be satisfied. At each step, a set of pix-

els neighboring to the evolving region and also verifying the

aggregation criterion, is added to Rin, results in a new Rin

region. The process stops when no more voxels can be added.

Let us note ϕ(x) ∈ [0, 1] the function used for assessing the

aggregation criterion for a voxel x. The aggregation criterion

is true when:

ϕ (x) ≥ δ (2)

where δ ∈ [0, 1] is a given threshold. In this work, ϕ(x) is

computed from two terms ϕregion(x) and ϕshape(d(x,Γref ))
as expressed in (3):

ϕ (x) = ϕregion(x)× ϕshape

(
d
(
x,Γref

))
(3)

The first term ϕregion (x) ∈ [0, 1] defined in (4) corresponds

to a measure of similarity (or homogeneity) between I(x) and

Rin. We assume that the underlying distribution of grey lev-

els in Rin is approximated by a Gaussian with mean μ and

standard deviation σ.

ϕregion(x) = exp
−(I(x)−μ)

2σ2 (4)

The nearer I(x) is to μ, the nearer ϕregion(x) is to 1. μ and

σ are estimated at each step from Rin.

Fig. 1. ϕshape(d(x,Γref )) for different λ values

Whereas ϕregion(x) ∈ [0, 1] is driven by image data, the sec-

ond term ϕshape(d(x,Γref )) defined in (5) takes into account

geometrical features and the proximity of x to the reference

model:

ϕshape(d(x,Γref )) =
(π
2 )− tan−1((λ × d(x,Γref ))3

π
(5)

where λ is a tuning parameter and d(x,Γref ) is the signed Eu-

clidean distance (1). As shown in Figure 1, when d(x,Γref )
is negative i.e. x inside the reference object, ϕshape(d(x,Γref ))
takes a value close to 1, thus helps the aggregation of x. When

d(x,Γref ) is positive i.e. x outside the reference object, ϕ-

shape(d(x,Γref )) takes a value close to 0, thus acts against

the aggregation of x. When d(x,Γref ) is close to 0, i.e.
x close to the reference contour, ϕshape(d(x,Γref )) takes

a constant value equal to 0.5. The aggregation criterion be-

comes more selective in the area ϕ(x) = ϕregion(x)/2 than

inside Rref . For the same threshold δ, a pixel in this area

will be added to Rin only if ϕregion(x) is twice-higher than

for a pixel located inside the object of reference. The width

of the flat evolution of ϕshape(d(x,Γref )) is parameterized

by λ value. The lower λ value, the wider the flat area, and

the less shape prior is taken into account. When λ is equal

to 0, ϕshape(d(x,Γref )) is equal to 0.5, whatever the value

of d(x,Γref ). So, the aggregation criterion becomes inde-

pendent of shape prior and behaves as a simple homogeneity

criterion used in the classical region growing. Parameter λ
may be related to the accuracy of the prerequisite registration

of the reference model with data. The better the registration

is, the higher λ can be set.

2.4. Optimal threshold

As mentioned in equation (2), the segmentation obtained by

region growing is highly dependent on the choice of δ the

threshold which steps in the aggregation criterion. Within

RGISP, we propose a solution to automatically find out δopt
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the optimal threshold leading to the best segmentation.

In order to evaluate Q(δ), the quality of the resulting segmen-

tation obtained with a threshold δ, two features are retained:

i) Qimage(δ) based on the mean normalized intensity gradi-

ent over the whole boundary of the segmented object noted

Γδ , and ii) Qshape(δ) based on the mean Euclidean distance

between the pixels belonging to Γδ and the reference contour

Γref .

Qimage(δ) ∈[0, 1] estimates the contrast along Γδ (6). The

higher the value of Qimage(δ) is, the more likely Γδ matches

true edges in the image.

Qimage(δ) =

∑

x∈Γδ

‖∇I (x)‖

Card (Γδ)
(6)

where Card(Γδ) is the number of voxels in the set Γδ .

Qshape(δ) ∈[0, 1] evaluates the match of Γδ with Γref (7).

The higher the value of Qshape(δ) is, the better Γδ fits Γref .

Qshape(δ) = 1−

∑

x∈Γδ

∣
∣d

(
x,Γref

)∣
∣

Card (Γδ)
(7)

We define Q(δ) as the sum of Qimage(δ) and Qshape(δ):

Q(δ) = Qimage(δ) +Qshape(δ) (8)

The optimal threshold δopt is determined by the following ex-

pression.

δopt = argmax
δ∈[0,1]

Q (δ) (9)

Shape prior provided by Qshape(δ) improves the detection of

δopt by preventing RGISP from converging to a non signifi-

cant region which could maximize Qimage(δ).

3. EVALUATION AND DISCUSSION

We apply RGISP on a 2D noisy synthesized image Figure 2(b)

in order to assess the performance of our method. Figure 2(a)

represents the object of interest.

In Figure 2(b), Gaussian noise and corruption were added.

So, the different parts of the image are characterized by differ-

ent Gaussian distributions of grey levels (object: Go(μo=120,

σo=10); background: Gb(μb=80, σb=30); anomalous rectan-

gle and inside of the handle: Ga(μa=160, σa=20). Figure 2(c)

displays the reference shape used as shape prior. It is shown

that the model differs slightly from the object, since no chip

appears at the bottom. Figure 3 shows the results of RGISP

for different λ values, i.e. for different degrees of shape prior

integration. The white contours delineate segmented regions.

The correct detection rates (cdr: percent of well classified

pixels) are also mentioned bellow each segmentation. In all

the cases, the optimal segmentation was found with δopt =

0.41. For λ=0.5, shape prior is almost not taken into account

(a) original image (b) noisy image (c) reference model

Fig. 2. Synthesized data: a) object to segment; b) noisy and

corrupted synthesized image; c) reference model

in the aggregation criterion, so RGISP fails to segment the

object by rejecting sparse pixels inside the object and by ag-

gregating wrong pixels in the hole of the handle. For λ=4,

shape prior starts to produce its effects, since topological in-

formation of the model can be fully retrieved in the segmented

object. For λ=20 and λ=50, RGISP achieves quite good seg-

mentations: pixels in the anomalous rectangle are accepted

whereas those in the hole of the handle are rejected. It can

be noticed that despite the difference between the reference

model and the initial object, RGISP succeeds in retrieving the

object with the chip even for a high value of λ.

Moreover, cdr values are all bigger than 98% and increase

with λ, thus demonstrating the improvement brought by shape

prior. Figure 4 compares the segmentation results obtained by

three methods: an automated thresholding, RGISP without

shape prior (λ=0) and RGISP with λ=50.

It appears that RGISP performs much better than region

growing without shape prior with a suppression of 86% mis-

classified pixels.

(a) λ=0.5 ; cdr=98.43 (b) λ=4 ; cdr=98.63

(c) λ=20 ; cdr=99.4 (d) λ=50 ; cdr=99.79

Fig. 3. RGISP Segmentations for different λ values
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(a) cdr=62 (b) cdr=98.5 (c) cdr=99.79, λ = 50

Fig. 4. Comparative results: a) automated thesholding, b)

RGISP without prior shape, c) RGISP with prior shape

4. APPLICATION ON 3D BIOMEDICAL IMAGES

RGISP was applied in the framework of small animal imag-

ing, provided by the platform Animage. The aim of this appli-

cation is the phenotyping of the mouse by analysis of kidney

volume. We tested RGISP on in vivo μ-CT images of kidney

of mouse (Balb/c), acquired after injection of an iodized prod-

uct of contrast. The volume has 240x220x330 8 bits voxels

with 35μm isotropic resolution.

The 3D reference model in Figure 5(b) was obtained by a pre-

vious segmentation of a reference image (Figure 5(a)). RGISP

was tested on a different input image shown in Figure 5(c).

The reference model of kidney was previously affine-registered

by using ITK library (http://www.itk.org/). RGISP without

shape prior fails to segment the kidney due to the strong in-

homogeneities (Figure 5(d)) whereas RGISP with λ = 10
achieves a correct segmentation (Figure 5(e), 5(f)). λ value

was set much for the purpose of flexibility with regards to

registration and to let the region growing fit data. The com-

promise is quite satisfying since shape prior allows recover-

ing the object shape more efficiently and introduces a kind of

regularization in the region growing process (Figure 5(e)).

(a) Ref. image (b) 3D ref. model (c) Input image

(d) RGISP λ = 0 (e) RGISP λ = 10 (f) 3D result

Fig. 5. μ-CT images of mouse kidney segmented by RGISP

5. CONCLUSION

In this paper, a new method of automated region growing in-

cluding shape prior is presented. This prior is based on a ref-

erence model which may more or less constrain the process

of region growing, so that even corrupted objects can be cor-

rectly segmented. Through our experimental results, RGISP

appears to meet positively the requirements raised by small

animal imaging i.e. automation and robustness for the anal-

ysis of huge data flow generated by longitudinal studies in

time.
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