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ABSTRACT 

A methodology for complexity scalable video encoding and 
complexity control within the framework of the H.264/AVC 
video encoder is presented. To yield good rate-distortion 
performance under strict complexity/time constraints for 
instance in real-time communication, a framework for optimal 
complexity allocation at the macroblock level is necessary. We 
developed a macroblock level fast motion estimation based 
complexity scalable motion/mode search algorithm where the 
complexity is adapted jointly by parameters that determine the 
aggressiveness of an early stop criteria, the number of ordered 
modes searched, and the accuracy of motion estimation steps 
for the INTER modes. Next, these complexity parameters are 
adapted per macroblock based on a control loop to 
approximately satisfy an encoding frame rate target. The 
optimal manner of adapting the parameters is derived from 
prior training. Results using the developed scalable complexity 
H.264/AVC encoder demonstrate the benefit of adaptive 
complexity allocation over uniform complexity scaling.    
    Index Terms  H.264/AVC, complexity control, scalable 
complexity, real-time video coding, videoconferencing, fast 
motion estimation. 

1. INTRODUCTION 
In recent video coding standards such as H.264/AVC [1], 
superior rate-distortion efficiency is achieved by incorporation 
of algorithmic features requiring complex motion and mode 
searches during encoding. Since the decoding complexity is 
less impacted, the use of such complex encoders is legitimate 
for applications where offline encoding is possible, ex. DVD 
distribution of movies. However, in applications requiring real-
time video encoding and delivery, such as videoconferencing, 
live video broadcast or even live recording, complex encoders 
pose huge problems in maintaining the desired throughput and 
quality. Furthermore, real-time encoding on devices that are not 
only power-constrained (mobile devices) but also time varying 
in available power (battery powered devices, PCs), necessitates 
adaptability to optimally utilize the available power. 

While rate allocation to macroblocks (MBs) in a rate-
distortion optimal way is well studied in the context of image-
video compression [2] optimal complexity allocation has not 
been analyzed as well. Further, most real-time encoders use a 
form of fast Motion Estimation (ME) (ex. [9]) with a variety of 
inter-dependent parameters that are confusing to adapt in order 
to allocate complexity differently. In this work, we first present 
a methodology to answer the following complexity related 
question for video encoding: what parameters are most suitable 
for complexity adaptation based on a fast ME scheme, and 

what is their optimal tuning strategy that results in the highest 
compression efficiency given a total complexity constraint at 
the encoder and a target quality? Next we use the developed 
complexity adaptation mechanism in conjunction with a control 
loop to achieve coding delay control. Note that this work is not 
just another method to decrease the complexity of H.264/AVC 
encoder with negligible compression efficiency loss, but a 
framework to scale the complexity, building on already 
optimized fast motion/mode searches, in a quasi-optimal 
manner (in the sense of minimizing R-D performance loss).    

A few recent works also address the complexity scalability 
problem. In some of them [3][4][5], all MBs in a frame are 
ordered and more computation is allocated to the MBs with the 
highest distortion or distortion (SAD)-complexity slope in the 
entire frame step by step. However, there are two fundamental 
problems associated with these approaches. First motion vector 
predictors from spatial neighborhoods cannot be used 
effectively. Second, since all the MBs are processed 
simultaneously, huge book-keeping overheads are incurred. In 
our work, MBs are still processed in sequential order. In [6], 
complexity scalability is achieved only by assigning different 
number of SAD computations depending on a binary decision 
of static/non-static MB. Our framework [10] is more generic in 
handling multiple parameters for fast ME jointly. Furthermore, 
we attempt to find the optimal manner of adapting the 
parameters by a training based methodology.   

2. MOTION-MODE SEARCH ALGORITHM 
In this section we present a motion-mode search algorithm 
where the complexity is controlled by a few relevant 
parameters. H.264/AVC supports multiple encoding modes, 
and optimal encoding requires searching through all of them to 
find the best in the rate-distortion sense. In order to reduce 
complexity and scale it, we devise a mechanism where the 
modes are searched in a certain order with checks at the end of 
each mode to terminate the search or continue. Further, within 
each inter mode, the accuracy of the motion estimation process 
can be varied. The order of the modes is important for R-D 
performance. The ordering may be based on the statistical 
frequency of the optimal modes for a given type of video.  

All SAD costs in the following refer to the SAD+ Rmotion 
metric which is an approximation to the true D+ R cost. 
Further, the following notations are introduced in Table 1. 

Table 1. Definition of parameters 
SAD16×16(mode)
SAD8×8(mode) 

 

Lowest SAD cost for a 16×16 MB and 8x8 block respectively, 
with given mode. Thus SAD16×16(8×16) is the total SAD cost for a 
16x16 MB in the 8×16 mode obtained by summing the costs for 
two 8×16 blocks comprising it, while SAD8×8(4×4) is the total
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SAD cost for a 8×8 block in the 4×4 mode obtained by summing 
the costs for the four 4×4 constituent sub-blocks. 

SADSKIP Skip threshold which is only a function of the quantization 
parameter given as:  

SADSKIP = N.2QP/6 / 12, 
N being the number of pixels in 16×16 MB (N=256), similar to 
the formulation in [9]. 

SADpred(m×n) SAD cost prediction for a m×n block, obtained from SADs for 
neighboring blocks or collocated blocks from reference frame as 
in [9]. 

 Early stop threshold scaling factor 
SADES Early stop SAD cost threshold which is obtained by scaling 

SADpred(16×16) by : 
SADES = .SADpred(16×16) 

C Computation required to search a mode or conduct a step of fast 
ME. It can be measured by real time taken or approximated by the 
number of SAD cost computations conducted. 

MD Mode search gradient parameter that determines the number of 
INTER modes tested for each MB (n=16) or 8×8 block (n=8):   

CSADSAD nnnnMD /))mode(( min                    
where min

nnSAD  is the minimum n×n SAD cost in INTER mode 
searches conducted before the current mode search. 

TH
MD  Mode search gradient threshold parameter 
ME Motion estimation gradient parameter computed at the end of 

each recursive step of fast ME:  
CSAD nnME /min  

where min
nnSAD  is the change in minimum SAD after the search 

step. 
TH
ME  Motion estimation gradient threshold parameter 

The general flow of the proposed complexity scalable mode 
search for QCIF/CIF sequences is given in Figure 1, and is 
explained below. Note that for higher resolution sequences, 
INTRA prediction modes are more useful, and hence they 
should be searched before the INTER modes are searched. 

First, the SKIP mode SAD cost SAD16×16(Skip) is computed 
based on the predicted motion vector (MVP). If SAD16×16 (Skip) 
< SADSKIP threshold mode search is finished and the MB 
encoded in SKIP mode. Otherwise, if SAD16×16(Skip) < SADES, 
the early stop threshold, mode search is finished and the MB is 
encoded in the 16×16 INTER mode with motion vector equal 
MVP. Note that when this mode is chosen, the final encoded 
mode can still be SKIP, if all the quantized transform 
coefficients are zero. In the other case, SAD16×16(INTRA-np), 
the SAD cost for INTRA with no prediction is calculated, and 
if SAD16×16(INTRA-np) < SADES, mode search is finished and 
the MB encoded in INTRA mode without prediction. Else, the 
search proceeds to INTER 16×16 fast ME. After ME, the mode 
search gradient MD as described in Table 1 is computed, and 
compared with mode search gradient threshold TH

MD ; if 
TH
MDMD , the mode search is finished and the MB encoded in 

INTER 16×16mode. Otherwise, fast ME for 8×16 and 16×8 
modes are conducted, and the better of the two is computed. If 

TH
MDMD , mode search is finished and the MB encoded with 

the best mode so far. In the other case, we proceed to search 
8×8 block modes. For each 8×8 block, fast 8×8 ME is first 
conducted followed by MD computation; if TH

MDMD  mode 
search for that block is finished and the block is assigned the 
8×8 mode. Otherwise, we continue to search 8×4 and 4×8 
modes, find the better of the two, compute MD and check if 

TH
MDMD . If so, mode search for the block is finished by 

assigning the best mode so far to it; otherwise 4×4 modes are 
searched and thereafter the block is assigned the best mode so 
far. When the modes for all of the 8×8 constituent blocks in a 
MB have been searched, we aggregate the overall SAD cost for 
the MB, and update the minimum SAD cost and the best mode 
so far. The minimum SAD cost so far is then compared with 
SADES again to continue mode search with INTRA predictions 
or not. Note that there are a variety of INTRA predictors, and 
potentially complexity scalability may be achieved by ordering 
the search within them as well using simple features. While this 
paper does not consider such possibilities explicitly, the 
concepts in the paper can be readily extended to handle this 
case as well. Once the INTRA prediction modes have been 
searched, the overall best mode is chosen as the final mode. 

The fast ME steps in the above algorithm at various block 
sizes is based on the one in [9], but we add the flexibility to 
scale the accuracy of the motion vectors searched. Because all 
fast ME schemes are essentially similar in that they compute a 
set of good predictors and conduct systematic non-recursive 
and recursive searches around the best predictor, our method 
can be readily extended to other fast ME schemes reported in 
the literature. In particular, we compute a motion estimation 
gradient parameter as described in Table 1 at the end of each 
recursive step of fast ME and terminate the search if TH

MEME , 
where TH

ME  is the motion estimation gradient threshold 
determining the accuracy of the motion estimation process. 
Note that the non-recursive steps that precede the recursive 
steps can be skipped based on comparing the SAD cost of the 
best predictor with the SAD predictors for the block.  

Note that the ME gradient has been also used by other 
researchers [4] to scale complexity of fast ME methods. We 
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Figure 1. General flowchart of complexity scalable mode search 
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also considered utilizing complexity parameters other than ME 
gradient, such as the number of predictors or search window 
size in [10], but they did not produce optimal R-D-C points.   

We next consider parameters that are used to scale the 
complexity of encoding, given the algorithm above. We found 
using a training-based approach described in the next section, 
that the three parameters },,{ TH

ME
TH
MD  are the only viable 

parameters to scale complexity. The parameter  primarily 
determines the aggressiveness of early termination by choosing 
the INTER 16x16 mode with the predicted MV or INTRA 
mode without any prediction. The mode gradient threshold 
parameter TH

MD  determines the number of modes searched in 
large to small block size order. The motion estimation gradient 
threshold parameter TH

ME  determines the accuracy of the fast 
motion estimation steps for each block size. 

3. TRAINING -BASED COMPLEXITY MAPPING 
Generally, there are multiple inter-dependent parameters that 
can potentially be used to scale the complexity of a motion-
mode search algorithm. However, allocation of complexity 
must be determined by a single controllable scalar complexity 
parameter CS that can be adjusted with fine granularity at a MB 
level. Thus a mapping from CS to the algorithmic parameters 

},,{ TH
ME

TH
MD  is necessary. Since the function that maps 

complexity parameters to the real complexity is implementation 
and platform dependent, we propose a training based generic 
methodology where the mapping is obtained by training on a 
given encoder implementation and platform.  

First, we implemented the above algorithm on the fast ME 
[9] implementation included in the reference software [8]. 
Next, a training pool of typical videos is created, and run 
through the encoder with different combinations of finely 
sampled algorithmic parameters to generate rate-complexity (R-
C) points, at a given constant quality (QP). From this collection 
of points, the convex hull is generated. Since only points on the 
convex hull are optimal for encoding for the given quality, 
parameter sets that do not generate points on the convex hull of 
the complexity-rate curve are pruned out. Figure 2 shows the 
points and the convex hull. For points on the convex hull, the 
optimal parameter combination for a given complexity level CS 
can be readily read out. This information is next used to create 
a mapping from a complexity CS to the corresponding 
algorithmic parameters. Since there may not be a set of 

parameters available at each CS value, linear interpolation of 
the parameters is conducted to obtain the parameter values at 
each CS point over a useful range. Fortunately, we also found 
this mapping to be largely independent of the quantization 
parameter QP, and therefore a convenient common mapping 
could be used irrespective of the target quality. 

Note that the above training was in fact conducted not only 
for the three parameters mentioned above but also for several 
other potential parameters. However, it turned out that only 
changing },,{ TH

ME
TH
MD  generated points on the convex hull. 

Therefore we concluded that only these three parameters are 
useful for complexity scaling. The remaining ones are left at 
fixed optimal values. The training approach not only indicates 
the parameters that are useful for optimal scaling and provides 
the optimal mapping from CS to them, but also provides the 
optimal fixed values for the other parameters. 

The mapping for parameters },,{ TH
ME

TH
MD  obtained by the 

training procedure above leads to the following insight about 
the optimal scaling strategy. The highest complexity point for 
the algorithm is one where all INTRA and INTER modes are 
searched at the highest accuracy. To scale down complexity 
from this point, increasing the mode gradient threshold TH

MD  
appears to be the best option, while keeping  and TH

ME  small. 
That is, the optimal strategy for complexity reduction at higher 
complexities is to reduce the number of INTER modes 
searched but not their accuracy. Complexity is decreased in this 
manner up to the point where only the 16x16 INTER mode can 
be searched. Thereafter, further complexity reduction is 
optimally achieved by increasing the motion estimation 
gradient threshold TH

ME  i.e. by reducing the accuracy of motion 
estimation process. If even further complexity reduction is 
desired, the optimal way would be to increase the early stop 
SAD threshold multiplier . The minimum complexity point 
is achieved by setting the SAD threshold to a high number such 
that, all MBs are indeed encoded with MVP which reduces to 
zero, i.e., only the difference between consecutive frames is 
encoded. Thus the combination of the three parameters covers a 
wide enough range of complexities. 

It is convenient to express the CS parameter not in terms of 
the real complexity (encoding time), but in a scale between 0 
and 100, where 100 corresponds to the maximum complexity 
point (where all INTER and INTRA modes are searched), and 0 
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Figure 2. Rate-Complexity points and Convex Hull for a fixed 
quantization parameter (QP=32). Points on convex Hull are circled. 
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Figure 3. Rate-Distortion curves for different CS values for the 
Foreman sequence at CIF 30fps resolution 
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corresponds to the lowest complexity point where only the 
difference is encoded. Using this scale, Figure 3 shows the rate-
distortion curves for different complexity (CS) values. 

4. COMPLEXITY CONTROL RESULTS 
The scalar complexity parameter CS per macroblock can now be 
used to control the coding delay of a software encoder. Ideally, 
the complexity allocation per MB should be such that the 
complexity-rate slope is identical for all MBs, and corresponds 
to a total coding delay target. This is an extension to the well 
known rate-distortion optimal bit allocation problem. However, 
the slope that corresponds to the complexity target is unknown, 
and further cannot be determined by methods such as bisection 
search as done in rate-distortion optimization, because 
complexity once expended cannot be reduced. Hence, we 
propose to control the complexity parameter using a control 
loop – specifically, a PID control loop. 

Figure 4 shows our proposed architecture for coding delay 
control. The CS parameter is updated on a MB by MB basis in a 
control loop to control the coding delay. The real encoding time 
per MB is measured by an accurate timer and fed back for the 
control. Specifically, we update the complexity parameter CS 
using the complexity (coding time) error (deviation from target) 
based on a sliding window of previous M MBs: 

)][(][ , ])2[]1[(]1[]1[][
1

0
T

M

k
DpSS CkicieieieKieKiCiC  

c denotes the real encoding time (complexity) for each MB 
measured with an accurate timer and CT  denotes the target 
complexity per MB. KP and KD denote proportional and 
derivative constants. Then, the complexity parameter CS for 
each MB is mapped to encoding parameters before encoding. 
With this scheme, complexity can be controlled with fine 
granularity to achieve a target delay for the encoding time per 
any unit such as frame or group of frames.  

Figure 5 shows the effectiveness of the coding delay control 

mechanism for a concatenation of three different sequences 
using our software encoder based on implementation [9] in [8]. 
However, the control process, while necessary does have a 
penalty. Figure 6 compares the rate-distortion curves for a 
controlled CS encoder vs. an encoder that uses a fixed CS 
parameter. Each point in the controlled CS version is run with 
the target coding delay equal to the overall encoding delay 
obtained with the fixed CS version. Figure 6 also shows the 
superiority of the proposed complexity allocation over an 
alternative strategy where the tunable TH

MD  parameter is replaced 
by a parameter NMD which is the number of modes to search in 
a pre-defined order, starting from 16×16 all the way to 4×4. 
This approach performs worse than the proposed gradient-
based one by about 0.2dB PSNR.  

5. CONCLUSION  
A complexity scalable H.264/AVC encoder is developed for 
use in a real-time delay-constrained video communication. In 
the future, we will explore joint rate and complexity control to 
drive real-time buffer controlled streaming. 
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Figure 5. Coding delay per frame for controlled and uncontrolled 
encoders for a concatenation of three QCIF sequences (Mobile + 
Akiyo + Foreman). The controlled version maintains an average 
coding delay around the target set-point (33 ms for 30fps) even 
though the source statistics changes. 

 
Figure 6. Rate-distortion curves for controlled vs. fixed CS encoder. 
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