
COMPLEXITY CONTROL FOR REAL-TIME VIDEO CODING

Emrah Akyol*, Debargha Mukherjee+, Yuxin Liu+
Email: eakyol@ee.ucla.edu, {debargha, yuxinl}@hpl.hp.com

* University of California, Los Angeles, CA, USA
+ HP Laboratories, Palo Alto, CA, USA

ABSTRACT

A methodology for complexity scalable video encoding and
complexity control within the framework of the H.264/AVC
video encoder is presented. To yield good rate-distortion
performance under strict complexity/time constraints for
instance in real-time communication, a framework for optimal
complexity allocation at the macroblock level is necessary. We
developed a macroblock level fast motion estimation based
complexity scalable motion/mode search algorithm where the
complexity is adapted jointly by parameters that determine the
aggressiveness of an early stop criteria, the number of ordered
modes searched, and the accuracy of motion estimation steps
for the INTER modes. Next, these complexity parameters are
adapted per macroblock based on a control loop to
approximately satisfy an encoding frame rate target. The
optimal manner of adapting the parameters is derived from
prior training. Results using the developed scalable complexity
H.264/AVC encoder demonstrate the benefit of adaptive
complexity allocation over uniform complexity scaling.
 Index Terms H.264/AVC, complexity control, scalable
complexity, real-time video coding, videoconferencing, fast
motion estimation.

1. INTRODUCTION
In recent video coding standards such as H.264/AVC [1],
superior rate-distortion efficiency is achieved by incorporation
of algorithmic features requiring complex motion and mode
searches during encoding. Since the decoding complexity is
less impacted, the use of such complex encoders is legitimate
for applications where offline encoding is possible, ex. DVD
distribution of movies. However, in applications requiring real-
time video encoding and delivery, such as videoconferencing,
live video broadcast or even live recording, complex encoders
pose huge problems in maintaining the desired throughput and
quality. Furthermore, real-time encoding on devices that are not
only power-constrained (mobile devices) but also time varying
in available power (battery powered devices, PCs), necessitates
adaptability to optimally utilize the available power.

While rate allocation to macroblocks (MBs) in a rate-
distortion optimal way is well studied in the context of image-
video compression [2] optimal complexity allocation has not
been analyzed as well. Further, most real-time encoders use a
form of fast Motion Estimation (ME) (ex. [9]) with a variety of
inter-dependent parameters that are confusing to adapt in order
to allocate complexity differently. In this work, we first present
a methodology to answer the following complexity related
question for video encoding: what parameters are most suitable
for complexity adaptation based on a fast ME scheme, and

what is their optimal tuning strategy that results in the highest
compression efficiency given a total complexity constraint at
the encoder and a target quality? Next we use the developed
complexity adaptation mechanism in conjunction with a control
loop to achieve coding delay control. Note that this work is not
just another method to decrease the complexity of H.264/AVC
encoder with negligible compression efficiency loss, but a
framework to scale the complexity, building on already
optimized fast motion/mode searches, in a quasi-optimal
manner (in the sense of minimizing R-D performance loss).

A few recent works also address the complexity scalability
problem. In some of them [3][4][5], all MBs in a frame are
ordered and more computation is allocated to the MBs with the
highest distortion or distortion (SAD)-complexity slope in the
entire frame step by step. However, there are two fundamental
problems associated with these approaches. First motion vector
predictors from spatial neighborhoods cannot be used
effectively. Second, since all the MBs are processed
simultaneously, huge book-keeping overheads are incurred. In
our work, MBs are still processed in sequential order. In [6],
complexity scalability is achieved only by assigning different
number of SAD computations depending on a binary decision
of static/non-static MB. Our framework [10] is more generic in
handling multiple parameters for fast ME jointly. Furthermore,
we attempt to find the optimal manner of adapting the
parameters by a training based methodology.

2. MOTION-MODE SEARCH ALGORITHM
In this section we present a motion-mode search algorithm
where the complexity is controlled by a few relevant
parameters. H.264/AVC supports multiple encoding modes,
and optimal encoding requires searching through all of them to
find the best in the rate-distortion sense. In order to reduce
complexity and scale it, we devise a mechanism where the
modes are searched in a certain order with checks at the end of
each mode to terminate the search or continue. Further, within
each inter mode, the accuracy of the motion estimation process
can be varied. The order of the modes is important for R-D
performance. The ordering may be based on the statistical
frequency of the optimal modes for a given type of video.

All SAD costs in the following refer to the SAD+ Rmotion
metric which is an approximation to the true D+ R cost.
Further, the following notations are introduced in Table 1.

Table 1. Definition of parameters
SAD16×16(mode)
SAD8×8(mode)

Lowest SAD cost for a 16×16 MB and 8x8 block respectively,
with given mode. Thus SAD16×16(8×16) is the total SAD cost for a
16x16 MB in the 8×16 mode obtained by summing the costs for
two 8×16 blocks comprising it, while SAD8×8(4×4) is the total

I - 771-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

SAD cost for a 8×8 block in the 4×4 mode obtained by summing
the costs for the four 4×4 constituent sub-blocks.

SADSKIP Skip threshold which is only a function of the quantization
parameter given as:

SADSKIP = N.2QP/6 / 12,
N being the number of pixels in 16×16 MB (N=256), similar to
the formulation in [9].

SADpred(m×n) SAD cost prediction for a m×n block, obtained from SADs for
neighboring blocks or collocated blocks from reference frame as
in [9].

 Early stop threshold scaling factor
SADES Early stop SAD cost threshold which is obtained by scaling

SADpred(16×16) by :
SADES = .SADpred(16×16)

C Computation required to search a mode or conduct a step of fast
ME. It can be measured by real time taken or approximated by the
number of SAD cost computations conducted.

MD Mode search gradient parameter that determines the number of
INTER modes tested for each MB (n=16) or 8×8 block (n=8):

CSADSAD nnnnMD /))mode((min
where min

nnSAD is the minimum n×n SAD cost in INTER mode
searches conducted before the current mode search.

TH
MD Mode search gradient threshold parameter
ME Motion estimation gradient parameter computed at the end of

each recursive step of fast ME:
CSAD nnME /min

where min
nnSAD is the change in minimum SAD after the search

step.
TH
ME Motion estimation gradient threshold parameter

The general flow of the proposed complexity scalable mode
search for QCIF/CIF sequences is given in Figure 1, and is
explained below. Note that for higher resolution sequences,
INTRA prediction modes are more useful, and hence they
should be searched before the INTER modes are searched.

First, the SKIP mode SAD cost SAD16×16(Skip) is computed
based on the predicted motion vector (MVP). If SAD16×16 (Skip)
< SADSKIP threshold mode search is finished and the MB
encoded in SKIP mode. Otherwise, if SAD16×16(Skip) < SADES,
the early stop threshold, mode search is finished and the MB is
encoded in the 16×16 INTER mode with motion vector equal
MVP. Note that when this mode is chosen, the final encoded
mode can still be SKIP, if all the quantized transform
coefficients are zero. In the other case, SAD16×16(INTRA-np),
the SAD cost for INTRA with no prediction is calculated, and
if SAD16×16(INTRA-np) < SADES, mode search is finished and
the MB encoded in INTRA mode without prediction. Else, the
search proceeds to INTER 16×16 fast ME. After ME, the mode
search gradient MD as described in Table 1 is computed, and
compared with mode search gradient threshold TH

MD ; if
TH
MDMD , the mode search is finished and the MB encoded in

INTER 16×16mode. Otherwise, fast ME for 8×16 and 16×8
modes are conducted, and the better of the two is computed. If

TH
MDMD , mode search is finished and the MB encoded with

the best mode so far. In the other case, we proceed to search
8×8 block modes. For each 8×8 block, fast 8×8 ME is first
conducted followed by MD computation; if TH

MDMD mode
search for that block is finished and the block is assigned the
8×8 mode. Otherwise, we continue to search 8×4 and 4×8
modes, find the better of the two, compute MD and check if

TH
MDMD . If so, mode search for the block is finished by

assigning the best mode so far to it; otherwise 4×4 modes are
searched and thereafter the block is assigned the best mode so
far. When the modes for all of the 8×8 constituent blocks in a
MB have been searched, we aggregate the overall SAD cost for
the MB, and update the minimum SAD cost and the best mode
so far. The minimum SAD cost so far is then compared with
SADES again to continue mode search with INTRA predictions
or not. Note that there are a variety of INTRA predictors, and
potentially complexity scalability may be achieved by ordering
the search within them as well using simple features. While this
paper does not consider such possibilities explicitly, the
concepts in the paper can be readily extended to handle this
case as well. Once the INTRA prediction modes have been
searched, the overall best mode is chosen as the final mode.

The fast ME steps in the above algorithm at various block
sizes is based on the one in [9], but we add the flexibility to
scale the accuracy of the motion vectors searched. Because all
fast ME schemes are essentially similar in that they compute a
set of good predictors and conduct systematic non-recursive
and recursive searches around the best predictor, our method
can be readily extended to other fast ME schemes reported in
the literature. In particular, we compute a motion estimation
gradient parameter as described in Table 1 at the end of each
recursive step of fast ME and terminate the search if TH

MEME ,
where TH

ME is the motion estimation gradient threshold
determining the accuracy of the motion estimation process.
Note that the non-recursive steps that precede the recursive
steps can be skipped based on comparing the SAD cost of the
best predictor with the SAD predictors for the block.

Note that the ME gradient has been also used by other
researchers [4] to scale complexity of fast ME methods. We

Yes

Yes

Yes

Yes

Yes

No

No

No

No

MB mode=SKIP

MB mode=INTER 16×16
with MVP

MB mode=INTRA
without prediction

MB mode=INTER 16×16

MB mode=best INTER
mode so far

Find SAD16×16(Skip)
Is SAD16×16(Skip)<SADSKIP ?

Is SAD16×16(Skip)<SADES ?

Find SAD16×16(INTRA-np)
Is SAD16×16(INTRA-np)<SADES ?

Fast ME for 16×16 INTER
Is TH

MDMD ?

Fast ME for 8×16 & 16×8 INTER
Is TH

MDMD ?

Aggregate SAD cost for 8×8 blocks in MB

Is ESSADSAD min
1616 ?

Yes MB mode=best INTER
mode so far

Compute best INTRA prediction mode
(should be moved up for

high resolution sequences)

MB mode=best INTER or
INTRA mode so far

No

Fast ME for 4×4 INTER

No

No

8×8 block mode=INTER
8×8

Yes

Yes
8×8 block mode=best
INTER mode so far

8×8 block mode=best
INTER mode so far

Get next 8×8 block

Are all 8×8 blocks done ?

Fast ME for 4×8 & 8×4 INTER
Is TH

MDMD ?

Fast ME for 8×8 INTER
Is TH

MDMD ?

For each 8×8 block in MB

No

Yes

Encode with chosen mode

No

Figure 1. General flowchart of complexity scalable mode search

I - 78

also considered utilizing complexity parameters other than ME
gradient, such as the number of predictors or search window
size in [10], but they did not produce optimal R-D-C points.

We next consider parameters that are used to scale the
complexity of encoding, given the algorithm above. We found
using a training-based approach described in the next section,
that the three parameters },,{ TH

ME
TH
MD are the only viable

parameters to scale complexity. The parameter primarily
determines the aggressiveness of early termination by choosing
the INTER 16x16 mode with the predicted MV or INTRA
mode without any prediction. The mode gradient threshold
parameter TH

MD determines the number of modes searched in
large to small block size order. The motion estimation gradient
threshold parameter TH

ME determines the accuracy of the fast
motion estimation steps for each block size.

3. TRAINING -BASED COMPLEXITY MAPPING
Generally, there are multiple inter-dependent parameters that
can potentially be used to scale the complexity of a motion-
mode search algorithm. However, allocation of complexity
must be determined by a single controllable scalar complexity
parameter CS that can be adjusted with fine granularity at a MB
level. Thus a mapping from CS to the algorithmic parameters

},,{ TH
ME

TH
MD is necessary. Since the function that maps

complexity parameters to the real complexity is implementation
and platform dependent, we propose a training based generic
methodology where the mapping is obtained by training on a
given encoder implementation and platform.

First, we implemented the above algorithm on the fast ME
[9] implementation included in the reference software [8].
Next, a training pool of typical videos is created, and run
through the encoder with different combinations of finely
sampled algorithmic parameters to generate rate-complexity (R-
C) points, at a given constant quality (QP). From this collection
of points, the convex hull is generated. Since only points on the
convex hull are optimal for encoding for the given quality,
parameter sets that do not generate points on the convex hull of
the complexity-rate curve are pruned out. Figure 2 shows the
points and the convex hull. For points on the convex hull, the
optimal parameter combination for a given complexity level CS
can be readily read out. This information is next used to create
a mapping from a complexity CS to the corresponding
algorithmic parameters. Since there may not be a set of

parameters available at each CS value, linear interpolation of
the parameters is conducted to obtain the parameter values at
each CS point over a useful range. Fortunately, we also found
this mapping to be largely independent of the quantization
parameter QP, and therefore a convenient common mapping
could be used irrespective of the target quality.

Note that the above training was in fact conducted not only
for the three parameters mentioned above but also for several
other potential parameters. However, it turned out that only
changing },,{ TH

ME
TH
MD generated points on the convex hull.

Therefore we concluded that only these three parameters are
useful for complexity scaling. The remaining ones are left at
fixed optimal values. The training approach not only indicates
the parameters that are useful for optimal scaling and provides
the optimal mapping from CS to them, but also provides the
optimal fixed values for the other parameters.

The mapping for parameters },,{ TH
ME

TH
MD obtained by the

training procedure above leads to the following insight about
the optimal scaling strategy. The highest complexity point for
the algorithm is one where all INTRA and INTER modes are
searched at the highest accuracy. To scale down complexity
from this point, increasing the mode gradient threshold TH

MD
appears to be the best option, while keeping and TH

ME small.
That is, the optimal strategy for complexity reduction at higher
complexities is to reduce the number of INTER modes
searched but not their accuracy. Complexity is decreased in this
manner up to the point where only the 16x16 INTER mode can
be searched. Thereafter, further complexity reduction is
optimally achieved by increasing the motion estimation
gradient threshold TH

ME i.e. by reducing the accuracy of motion
estimation process. If even further complexity reduction is
desired, the optimal way would be to increase the early stop
SAD threshold multiplier . The minimum complexity point
is achieved by setting the SAD threshold to a high number such
that, all MBs are indeed encoded with MVP which reduces to
zero, i.e., only the difference between consecutive frames is
encoded. Thus the combination of the three parameters covers a
wide enough range of complexities.

It is convenient to express the CS parameter not in terms of
the real complexity (encoding time), but in a scale between 0
and 100, where 100 corresponds to the maximum complexity
point (where all INTER and INTRA modes are searched), and 0

0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
All parameters

Scaled Rate

S
ca

le
d

C
om

pl
ex

ity

Figure 2. Rate-Complexity points and Convex Hull for a fixed
quantization parameter (QP=32). Points on convex Hull are circled.

0 500 1000 1500
32

33

34

35

36

37

38

39

40

Rate(kbps)

P
S

N
R

 (
dB

)

Different Encoding Complexities for CIF Foreman

CS=20

CS=40

CS=60

CS=80

Figure 3. Rate-Distortion curves for different CS values for the
Foreman sequence at CIF 30fps resolution

I - 79

corresponds to the lowest complexity point where only the
difference is encoded. Using this scale, Figure 3 shows the rate-
distortion curves for different complexity (CS) values.

4. COMPLEXITY CONTROL RESULTS
The scalar complexity parameter CS per macroblock can now be
used to control the coding delay of a software encoder. Ideally,
the complexity allocation per MB should be such that the
complexity-rate slope is identical for all MBs, and corresponds
to a total coding delay target. This is an extension to the well
known rate-distortion optimal bit allocation problem. However,
the slope that corresponds to the complexity target is unknown,
and further cannot be determined by methods such as bisection
search as done in rate-distortion optimization, because
complexity once expended cannot be reduced. Hence, we
propose to control the complexity parameter using a control
loop – specifically, a PID control loop.

Figure 4 shows our proposed architecture for coding delay
control. The CS parameter is updated on a MB by MB basis in a
control loop to control the coding delay. The real encoding time
per MB is measured by an accurate timer and fed back for the
control. Specifically, we update the complexity parameter CS
using the complexity (coding time) error (deviation from target)
based on a sliding window of previous M MBs:

)][(][,])2[]1[(]1[]1[][
1

0
T

M

k
DpSS CkicieieieKieKiCiC

c denotes the real encoding time (complexity) for each MB
measured with an accurate timer and CT denotes the target
complexity per MB. KP and KD denote proportional and
derivative constants. Then, the complexity parameter CS for
each MB is mapped to encoding parameters before encoding.
With this scheme, complexity can be controlled with fine
granularity to achieve a target delay for the encoding time per
any unit such as frame or group of frames.

Figure 5 shows the effectiveness of the coding delay control

mechanism for a concatenation of three different sequences
using our software encoder based on implementation [9] in [8].
However, the control process, while necessary does have a
penalty. Figure 6 compares the rate-distortion curves for a
controlled CS encoder vs. an encoder that uses a fixed CS
parameter. Each point in the controlled CS version is run with
the target coding delay equal to the overall encoding delay
obtained with the fixed CS version. Figure 6 also shows the
superiority of the proposed complexity allocation over an
alternative strategy where the tunable TH

MD parameter is replaced
by a parameter NMD which is the number of modes to search in
a pre-defined order, starting from 16×16 all the way to 4×4.
This approach performs worse than the proposed gradient-
based one by about 0.2dB PSNR.

5. CONCLUSION
A complexity scalable H.264/AVC encoder is developed for
use in a real-time delay-constrained video communication. In
the future, we will explore joint rate and complexity control to
drive real-time buffer controlled streaming.

6. REFERENCES
[1] Draft ITU-T Rec. and Final Draft International Standard of Joint Video

Specification, Joint Video Team, May 2003.
[2] A. Ortega and K. Ramchandran, “Rate-distortion methods for image

and video compression,” IEEE Signal Processing Magazine, vol. 15
no. 6, pp. 23–50, November 1998.

[3] P. L. Tai, S. Y. Huang, C. T. Liu, J. S. Wang, “Computation
aware scheme for software-based block motion estimation,” IEEE
Trans. Circ. and Syst. Video Tech., vol. 13, no. 9, Sep. 2003.

[4] Z. Yang, H. Cai, and J. Li, “A framework for fine-granular
computational-complexity scalable motion estimation,” IEEE Int.
Symp. on Circuits and Systems, Japan, 2005.

[5] C. Kim, J. Xin, A. Vetro, C. C. J. Kuo, “Complexity scalable motion
estimation for H.264/AVC,” Proc. SPIE, Visual Comm. Image Proc.,
vol. 6077, pp. 109-20, Jan 2006.

[6] Z. He, Y. Liang, L. Chen, I. Ahmad, D. Wu, “Power-rate-distortion
analysis for wireless video communication under energy constraint,”
IEEE Trans. Circ. and Syst. Video Tech., vol. 15, May 2005.

[7] H. F. Ates, B. Kanberoglu, Y. Altunbasak, "Rate-distortion and
complexity joint optimization for fast motion estimation in H.264 video
coding", IEEE Int. Conf. on Image Processing, Atlanta, USA, 2006.

[8] JVT Reference Software Version 10 [Online]. Available:
http://iphome.hhi.de/suehring/tml/index.htm

[9] Z. Chen and Y. He, “Fast Integer and fractional pel motion estimation,”
Joint Video Team (JVT), JVT-F017, Dec. 2002.

[10] E. Akyol, D. Mukherjee, “Complexity control for video compression
and transmission”, HP Labs Tech Report, Nov 2006.

MB encoding
time feedback

Complexity
Control

(update CS)

Algorithmic
parameters

Raw
MB

Complexity
Scalable (MB)

Encoder
Buffer To

channel

CS to algorithmic
parameter
mapper

CS
Designed by

offline training
based on convex
hull generation

Figure 4. Coding Delay Control Architecture

Figure 5. Coding delay per frame for controlled and uncontrolled
encoders for a concatenation of three QCIF sequences (Mobile +
Akiyo + Foreman). The controlled version maintains an average
coding delay around the target set-point (33 ms for 30fps) even
though the source statistics changes.

Figure 6. Rate-distortion curves for controlled vs. fixed CS encoder.

I - 80

