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ABSTRACT

Radial blurring (sometimes called zoom blurring) of an im-
age is a challenging problem because it is a shift-variant blur.
As one travels outward from the center of an image, the blur
length increases linearly with distance from the center. This
shift-variant characteristic precludes the use of other tradi-
tional FFT-based deblurring techniques. We propose a way
around this problem by transforming the coordinate system
of the blurred image into one in which the blur is LSI. Equiv-
alently, the blurred image is sampled in a particular nonuni-
form fashion so that the blur becomes LSI in the new discrete-
space coordinates. As a result, the blur can be modeled by
convolution so that FFT-based deblurring can be used.

Index Terms— radial blur, zoom blur

1. INTRODUCTION

While we have found no literature explicitly addressing radial
blurring or deblurring, this blur can occur under certain con-
ditions. Sometimes referred to as a zoom blur, a radial blur
arises when a picture (or video) is taken as the imaging device
is rapidly approaching the desired object. Such situations can
occur with aerial photography as well as video-based missile
systems. Figure 1 demonstrates the origin and mathematical
model of the blur. The variable x represents the horizontal
distance from the camera’s location to the object in question,
and v is the camera speed. The hollow rectangle is the ob-
ject of interest, and p can be viewed as the vertical distance in
the object plane seen by the camera. As time t increases and
the camera approaches the object, p becomes smaller while
the size of the object remains the same. This process creates
a time-dependent scaling of the object in the camera image
plane. This scale factor is represented by k. If the exposure
time or speed is significant relative to the distance, the image
will reflect a blurring of the object as it is progressively scaled
and recorded by the camera. The result of this process is the
integration (summation) of a sequence of continually scaled
images as shown in Figure 2.

Fig. 1. Blur origin

Fig. 2. Radial blurring

The major challenge with this type of blur is that the sys-
tem is shift-variant. The blur is a type of motion blur. How-
ever, whereas typical motion blurring assumes that the object
moves at a uniform rate during exposure, in this case the mo-
tion is different at each point in the object. In fact, the blur
length increases linearly as one travels outward from the cen-
ter of the image.
This fact renders traditional convolution-based deblurring

methods unusable [1]. Iterative algorithms are generally nec-
essary when the blur is not LSI [2], and these algorithms typi-
cally require a great deal more computation than closed-form
algorithms based on the FFT. The inability to use FFTs in the
deblurring process may be seriously problematic in the case
of video-based guidance due to the need for real-time restored
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images of the object being tracked. If the image can be resam-
pled into a space in which the blur is a constant linear motion
blur, then convolution—and hence FFTs—can be used to ac-
complish deblurring.
A related, well known idea—homomorphic filtering—has

been studied by Oppenheim et al. in which they use a point-
wise transformation on the dependent axis before and after
convolution [3]. In the proposed case, the independent axis
undergoes the transformation instead. That is, the spatial do-
main is warped so that an operation that was otherwise an-
other type of integral becomes a convolution sandwiched be-
tween two geometric transformations.
We propose to transform the coordinate system of the

blurred image into one in which the blur is LSI. Equivalently,
the blurred image will be sampled in a particular nonuniform
fashion so that the blur becomes LSI in the new discrete-space
coordinates. As a result, the blur can be modeled by convo-
lution so that we can perform closed-form FFT-based deblur-
ring.

2. MATHEMATICAL DEVELOPMENT

The representative equation for the original blurred system is
shown in (1) below, where g is the unblurred image, x is the
horizontal spatial coordinate, r is the vertical spatial coordi-
nate, and t represents time. The vertical spatial coordinate
is actually a signed radius, assuming the object of interest is
2-dimensional. This introduces a θ term related to every po-
sition r, which expresses the angle of the coordinate system
from the perspective of the observer relative to the horizon.
Because the blur is one-dimensional for any given θ, the ob-
servation equation is expressed with a subscript θ for each y

(and subsequently each g). φ is taken now to be the view an-
gle of an arbitrary pixel whose linear distance from the center
of the object is p.

yθ(φ) =

∫ t1

0

gθ(r(φ, t))dt (1)

From the diagram in Figure 1,

r = x tan(φ),
dx

dt
= −v (2)

Through a change of variables, we obtain

yθ(φ) =
1

v

∫ x0

x0−vt1

gθ(x tan(φ))dx (3)

In order to transform the blur to a convolution model, the
spatial dimension must be changed so that scaling becomes a
shift. In (4), (5), and (6), a change of variables is performed
so that the limits of integration are now logarithmic terms and
the integrand contains an exponential term. Let

z = log(x) + log(tan(φ)), ez = x tan(φ) (4)

Then
dz =

1

x
dx =

tan(φ)

ez
dx (5)

dx =
1

tan(φ)
ezdz (6)

Using these equations to do a change of variables on (3):

yθ(φ) =
1

tan(φ)

∫ log(d2)+log(tan(φ))

log(d1)+log(tan(φ))

ezg(ez)dz (7)

where
d1 = x0 − vt1, d2 = x0

In (7), the change of variables has been completed, but the
integral is not obviously in convolution form. Define

hθ(z) = ezgθ(e
z), ρi = log(di), α = log(tan(φ)) (8)

Using these expressions, we obtain:

ỹθ(α) =

∫ ρ2+α

ρ1+α

h(z)dz (9)

The we define

ỹθ(α) = yθ(log(tan(φ))) (10)

For convenience, the limits on integration are expressed
as multiplying the integrand by a pulse function in (11):

ỹθ(α) =

∫ ∞

−∞
[u(z−α−ρ1)−u(z−α−ρ2)]hθ(z)dz (11)

We observe that this is equivalent to

ỹθ(α) = [u(α − ρ1) − u(α − ρ2)] ∗ hθ(α) (12)

Accordingly, (12) demonstrates that the forward model has
been transformed into convolution with a uniformmotion blur
in a spatially transformed coordinate system.

3. EXPONENTIALLY SPACED SAMPLING

To express the blur operation in a discrete-space setting, the
image must be radially sampled with an exponential spacing
to achieve the desired shift-invariant result. By radial sam-
pling, we mean along a line of pixels from one boundary of
the image to the opposite boundary while passing through the
center. These lines of pixels are taken at various angles, and
then the lines of pixels are placed in columns to form a new
rectangular image. Because these sample locations do not lie
on a regular grid, an interpolation scheme must be used [4, 5].
A visualization of this sampling pattern is shown in Figure 3.
The center of the image would be located at (0,0), and the
square represents the boundaries of the image.
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Fig. 3. Sampling Layout

Because the sampling is done radially, two parameters to
consider are the quantity of sampling angles and the relative
sample spacing. As the number of angles increases, the detail
retained from the original image data increases. However, this
also increases the computational time proportionately. The
sampling must be dense enough to fully sample the image at
the outer boundaries. In our experiments, we found that using
720 angles maintained the desired detail given the level of
smoothing required to overcome noise behavior. Low-noise
or high-resolution images would require more angles. The
exponential spacing of the sampling pattern varies depending
on the size of the input image. This spacing is dictated by the
size of the input image; the spacing at the outer boundaries
must be equivalent to the sampling of the blurred image to
avoid aliasing.

4. BLUR MODELING

In order to test the functionality of the process, test images can
be constructed via two different methods. The first method
involves implementing the discretized blurring model on an
unblurred image. The image is sampled radially, then blurred
by column using FFTs. The image is then reconstructed in
its original space using 2-D interpolation. This constitutes
a radially blurred image that can then be used to test radial
deblurring algorithms.
The second method forms the blurry image by using resiz-

ing and summation. The original image is taken and resized
by uniform increments of the scale factor to be larger and
larger, and all the resulting images are then added together.
The process can be seen in Figure 2. This method is use-
ful in that artifacts due to the radial sampling process can be
avoided, and one can test the algorithm when the blurring and
deblurring process are not structurally the same. Furthermore,
different boundary conditions can be used as compared to the
FFT-based radial blurring method.

5. DEBLURRING METHOD

The deblurring procedure begins with the radial sampling of
the blurry image, as detailed in Section 3. To obtain the en-
tire image in this process, the maximum radius of sampling
must be equal to

√
2

2 N , where N is the length of a side of the
image. After stacking these radial samples into columns, the
resulting image resembles Figure 4. The black arches at the
bottom of the image result from sampling wide enough to ob-
tain the corners of the original image. Because the sampling
pattern is a circle, some of the sample points will fall out-
side the image frame. These undefined samples are supplied
by replicating the last known good pixel value inside the im-
age in that direction. The blur is now a one-dimensional mo-
tion blur at an angle of 90 degrees. The radial-space image is
then deblurred (columnwise) via a simple FFT-based regular-
ized restoration algorithm. For simplicity, the regularization
operator was set to identity, and the regularization parameter
was chosen by trial and error. The order of magnitude of the
regularization parameter determined the characteristics of the
result, and it was found that an order of 10−3 produced the
sharpest results. Symmetric extension was used to extend the
boundaries to reduce edge artifacts, although more complex
but effective methods are available [6].
Once the deblurring is complete, the radial sampling is

reversed—a 2-dimensional interpolation is performed to fill
in the unknown pixels using a nonuniform interpolation al-
gorithm based on Delaunay triangularization. This process
(the 2-dimensional interpolation) is the main bottleneck in the
procedure, requiring more than 90% of the total computation
time. Fortunately, most of the computation can be done in
advance to eliminate this bottleneck.

Fig. 4. Radial-space image

6. RESULTS

Figure 5 is the cameraman picture blurred with a 20% FFT-
based radial blur and then reconstructed. The artifacts pro-
duced in the image mainly result from sharp edges around the
boundary of the original image. These can be significantly
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reduced if the outer border of the original image is free from
highly detailed objects or if a more sophisticated boundary-
compensation scheme is used.

Fig. 5. FFT-blurred image with reconstruction

Figure 6 is a picture of a fighter jet blurred (via the FFT
method) with a severe 25% blur. This picture illustrates a
rather extreme case for this method. Generally, blurs larger
than this extend beyond the boundaries of the image, creat-
ing serious artifacts in the deblurring processing and therefore
making adequate restorations very difficult.

Fig. 6. Severe 25% blur and reconstruction

The last set of pictures represents blurs created through
the summation method with a blur of approximately 15%.
Figure 7 shows the jet image blurred and then reconstructed.
The image is recovered well from this method of blurring.

Fig. 7. Summation-blurred image with reconstruction

7. CONCLUSION

The proposed method performs well on images in which the
main details are not blurred close to the image boundaries.
During the restoration process, these sharp details produce
noticeable ringing effects. These effects are evident in the
restoration of the cameraman, which contains significant de-
tail at the boundaries.
One of the interesting opportunities in this process is that

any level of scaling (within the range of the scaled images
that comprise the blurry image) can be recovered. To recover
a particular scaling, one must simply define the shift of the
pulse in the resampled domain so that the deconvolution pro-
cess recovers the image with that particular shift; a given shift
translates into a given “origin” in terms of the scaling of the
image. In this way, the largest of the scaled copies of the
image can be recovered to obtain maximum resolution.
A number of issues remain to be worked out. First, the

effects of noise have not been considered in this work. Noise
effects will be more significant at further distances from the
radial center. Shift-invariant smoothing in the resampled do-
main may not yield the best possible tradeoff between noise
suppression and noise amplification. Second, the best ap-
proach to handling boundaries must be investigated. Third,
we must study the tradeoffs involved in sampling density ver-
sus restoration quality. However, the present work provides a
proof of concept for a highly efficient approach to deblurring
radially blurred images.
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