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ABSTRACT

In this paper we present a new Bayesian model for the blind

image deconvolution (BID) problem. The main novelties of

this model are three. The first one is the use of a sparse

kernel-based model for the point spread function (PSF) that

allows estimation of both PSF shape and support. The second

one is a robust distribution of the BID model errors and the

third novelty is an image prior that preserves edges of the re-

constructed image. Sparseness, robustness and preservation

of edges is achieved by using priors that are based on the

Student-t probability density function (pdf). The Variational

methodology is used to solve the corresponding Bayesian model.

Numerical experiments are presented that demonstrate the ad-

vantages of this model as compared to previous Gaussian based

ones.

Index Terms— Bayesian, Variational, Blind Deconvo-

lution, Kernel Model, Sparse Prior, Robust Prior, Student-t

Prior

1. INTRODUCTION

In blind image deconvolution (BID) both the initial image

and the blurring point spread function (PSF), are unknown.

Thus for this problem the observed data are not sufficient to

uniquely specify the unknown parameters. In order to resolve

this ambiguity, prior knowledge (constraints) has to be used

for both the image and the PSF.

A recent and successful approach to apply constraints to

the image and the PSF is the use of the Bayesian methodol-

ogy. Unfortunately, because of the non-linearity of the data

generation model in BID, Bayesian inference presents sev-

eral computational difficulties, since the posterior distribu-

tion of the unknown parameters can not be computed ana-

lytically. These difficulties can be overcome using the vari-

ational Bayesian methodology [1, 2]. However, the previous

Bayesian models [1, 2] used for BID were based on Gaussian

stationary statistics. Thus, they can not estimate reliably the

support of the PSF, are not robust to large imaging model er-

rors and the edges in the reconstructed images are blurred and
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display ringing artifacts.

In this paper we propose a new Bayesian model for the

BID problem that ameliorate on the above shortcomings. This

model introduces three novelties.

• First, using the proposed PSF model, we can estimate

both the support and shape of the PSF. More specifi-

cally, a sparse kernel based model is used for the un-

known PSF, in a similar manner as for the Relevance

Vector Machine (RVM) [3]. This model has the prop-

erty to prune out unnecessary kernels, thus providing

an effective mechanism to estimate the PSF spatial sup-

port.

• Second, the proposed model is robust to errors of the

BID model. This is achieved by assuming non Gaus-

sian errors modeled by a pdf with heavy tails.

• Third, an edge preserving image prior is employed, which

is based on the assumption that the local image differ-

ences also follow a non Gaussian pdf with heavy tails.

The pdf used to enforce sparseness of the PSF prior, robust-

ness to the BID model errors and edge preservation via the

local image differences of the image, is the Student-t pdf [4].

The herein proposed Bayesian model is too complex to be

solved exactly. Therefore, we resort to the variational approx-

imation methodology [5]. This approximation methodology

assumes a family of approximate posterior distributions and

then finds the best approximation of the true posterior within

this family. This methodology has been succesfully used in

many Bayesian inference problems.

2. BID MODEL

We assume that the observed image g(x) has been generated

by convolving an unknown image f(x) with an also unknown

PSF h(x). To account for errors additive independent noise

n(x) is also assumed. This model is written as

g(x) = f(x) ∗ h(x) + n(x), (1)

where x = (x1, x2) ∈ ΩI , ΩI ⊂ �2 is the support of the

image and ∗ denotes two-dimensional circular convolution.
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Equivalently, this can be written in vector form as

g = f ∗ h + n, (2)

where g, f , h and n are N × 1 lexicographicaly ordered

vectors (N is the number of pixels) of the intensities of the

degraded image, observed image, blurring PSF and additive

noise respectively. Here, we introduce the N × N block-

circulant matrices F and H , which implement two-dimensional

convolution with the vectors f and h respectively. Then, the

above equation can been written as

g = Fh + n = Hf + n. (3)

2.1. PSF kernel model

We model the PSF as the linear combination of basis func-

tions:

h(x) =
N∑

i=1

wiφi(x), (4)

where φi(x) = K(x, xi) is a kernel function centered at pixel

xi = (xi1, xi2) ∈ ΩI and w = (w1, . . . , wN )T are the pa-

rameters of the linear combination. We denote with h =
(h(x1), . . . , h(xN ))T

the vector of values of the PSF h(x)
at each image pixel xi and with φi = (φi(x1), . . . , φi(xN ))T

the corresponding basis vector for φi(x). Then the PSF vec-

tor h is modeled as the linear combination of the basis vectors

φi:

h =
N∑

i=1

wiφi. (5)

We further assume that K(x, xi) = K(x−xi), thus equation

(5) can be written as:

h = Φw = Wφ = φ ∗ w, (6)

where Φ and W are N ×N block-circulant matrices that im-

plement two-dimensional convolution with φ = φ1 and w
respectively.

Thus, the data generation model (2) can be written as:

g = FΦw + n = ΦWf + n. (7)

2.2. PSF sparseness

A hierarchical prior that enforces sparsity is imposed on the

weights w [3], by assigning them a zero-mean Gaussian dis-

tribution:

p(w|α) = N(w|0, A−1), (8)

with diagonal covariance matrix A = diag{α}, where α =
(α1, . . . , αN )T . Therefore, each weight is assigned a separate

precision parameter αi, which is treated as a random variable

that follows a Gamma distribution:

p(α) =
N∏

i=1

Gamma(αi|aα, bα). (9)

This two-level hierarchical prior is equivalent to a prod-

uct of Student-t prior distributions. This can be realized by

integrating out the parameters αi to obtain the prior weight

distribution p(w):

p(w) =
∫

p(w|α)p(α)dα =
N∏

i=1

St(wi|0,
bα

aα
, 2aα), (10)

where St(w|0, bα

aα , 2aα) denotes a zero mean Student-t distri-

bution with variance bα

aα and 2aα degrees of freedom [4].

2.3. Image model

The image prior that we use is based on K filtered versions

of the image: εk = Qkf , where Qk are N ×N convolutional

operators of the filters (k = 1, . . . ,K). Equivalently, we use

the KN ×N operator Q̃ = (Q1T
, . . . , QKT )T that produces

the KN × 1 vector ε̃ = (ε1T
, . . . , εKT )T :

ε̃ = Q̃f = ((Q1f)T , . . . , (QKf)T )T . (11)

We assume that εk
i is Gaussian distributed with distinct

inverse variance γk
i :

p(εk
i |γk

i ) = N(εk
i |0, (γk

i )−1). (12)

Assuming the εk
i independent with respect to i induces a prior

for the image, which is given by

pk(f |γk) = N(f |0, (QkT
ΓkQk)−1), (13)

with γk = (γk
1 . . . γk

N )T and Γk = diag{γk}. In order to

combine the information that is available in priors pk, we de-

fine a composite prior, which is the product of them:

p(f |γ̃) =
1
Z

K∏
k=1

pk(f |γk) = N(f |0, (Q̃T Γ̃Q̃)−1), (14)

where γ̃ = (γ1T
, . . . , γKT )T and Γ̃ = diag{γ̃}. Unfortu-

nately, we cannot analytically, compute the determinant |Q̃T Γ̃Q̃|
that is required to estimate the normalization constant Z. In-

stead we use the following improper prior:

p(f |γ̃) ∝
K∏

k=1

N∏
i=1

(
γk

i

2π
)

1
2 exp{−1

2
fT Q̃T Γ̃Q̃f}. (15)

The parameters γk
i are assumed to be independent identi-

cally distributed, Gamma random variables:

p(γ̃) =
K∏

k=1

N∏
i=1

Gamma(γk
i |aγ , bγ). (16)

Thus, the image prior for each εk is a Student-t pdf, similarly

with (10).
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Fig. 1. Graphical model that describes the dependencies be-

tween the random variables of the proposed model.

2.4. Noise model

The noise n of the BID model (3) is assumed to be zero mean

Gaussian distributed, given by:

p(n|β) =
N∏

i=1

N(ni|0, β−1
i ) = N(n|0, B−1), (17)

with β = (β1, . . . , βN ) and B = diag(β). The parameters

βi that define the variance of the noise at each pixel, are also

assumed to be random variables with a Gamma distributed

prior:

p(β) =
N∏

i=1

Gamma(βi|aβ , bβ). (18)

3. VARIATIONAL BAYESIAN INFERENCE

The dependencies among the random variables that define the

proposed Bayesian model are shown in the graphical model

of Fig. 1. Because of the complexity of this model, the pos-

terior distribution of the parameters p(θ|D) cannot be com-

puted and exact inference methods, such as maximum likeli-

hood via the EM algorithm, can not be applied. Instead, we

resort to approximate inference and specifically to the vari-

ational Bayesian methodology [5]. This is an approximate

inference methodology, which assumes a family of approxi-

mate posterior distributions q(θ) and then seeks values for the

parameters θ that best approximate the true posterior p(θ|D).
The approximate posterior distributions of the hidden vari-

ables are computed from

q(θi) ∝ exp[〈ln p(D, θ)〉q(θ\i)], (19)

where θ\i denotes the vector of all hidden variables except θi,

and are the following:

q(w) = N(w|μw, Σw), (20)

q(f) = N(f |μf , Σf ), (21)

q(α) =
N∏

i=1

Gamma(αi|ãα, b̃α
i ), (22)

q(β) =
N∏

i=1

Gamma(βi|ãβ , b̃β
i ), (23)

q(γ) =
K∏

k=1

N∏
i=1

Gamma(γk
i |ãγ

i , b̃γk

i ), (24)

where

μw = ΣwΦT 〈FT B〉g, (25)

Σw =
(
ΦT 〈FT BF 〉Φ + 〈A〉 )−1

, (26)

μf = ΣfΦT 〈WT B〉g, (27)

Σf =
(
ΦT 〈WT BW 〉Φ + Q̃T 〈Γ̃〉Q̃

)−1

, (28)

ãα = aα + 1/2, (29)

b̃α
i = bα +

1
2
〈w2

i 〉, (30)

ãβ = aβ + N/2, (31)

b̃β
i = bβ +

1
2
〈nnT 〉ii, (32)

ãγ = aγ + 1/2, (33)

b̃γk

i = bγ +
1
2
〈(Qkf)2ii〉. (34)

The required expected values can be computed as:

〈w〉 = μw, (35)

〈w2
i 〉 = μ2

wi
+ Σwii , (36)

〈f〉 = μf , (37)

〈ffT 〉 = μfμT
f + Σf , (38)

〈αi〉 = ãα/b̃α
i , (39)

〈βi〉 = ãβ/b̃β
i , (40)

〈γk
i 〉 = ãγ/b̃γk

i , (41)

〈nnT 〉 = ggT − 2Φ〈Fw〉gT + Φ〈FwwT FT 〉ΦT . (42)

4. NUMERICAL EXPERIMENTS

Several experiments have been carried out, in order to demon-

strate the properties of the proposed method and compare it

with previous Bayesian BID formulations based on the Gaus-

sian PSF.

Hereafter, we will refer to the proposed method as the

StStSt method, to imply that three Student-t priors are used to

model the PSF weights, the BID model errors and the image

local differences. We also considered four simpler versions of

this Bayesian model. The first one assumes a Gaussian dis-

tribution for the noise, p(n) = N(n|0, β−1I) and is denoted

as StGSt to imply that only the noise is Gaussian. The sec-

ond one assumes a Gaussian distribution only for the image

local differences, in other words p(f) = N(f |0, (γQT Q)−1)
and is denoted as StStG to imply that only the image prior is
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(a) (b) StGG 2.17, 6.69

(c) StStG 5.57, 10.91 (d) StGSt 5.87, 8.12

(e) StStSt 5.29, 9.44 (f) GGG 0.70,−4.71

Fig. 2. (a) Degraded image. Estimated images using the

(b) StGG, (c) StStG (d) StGSt, (e) StStSt and (f) GGG. The

numbers below each image are the ISNR values of the image

(ISNRf ) and the corresponding PSF (ISNRh).

assumed Gaussian. The next version considers Gaussian dis-

tributions for both the noise and image local differences and is

denoted as StGG. The last version, assumes Gaussian priors

for the PSF weights, imaging model errors and image local

differences, and therefore it is denoted as GGG.

For the filters Qk used to determine the image prior, we

considered horizontal and vertical first order local differences,

by defining Q1 and Q2 so that:

ε1(x, y) = f(x, y) − f(x + 1, y), (43)

ε2(x, y) = f(x, y) − f(x, y + 1). (44)

In the experiments, we compared all the methods using

artificially degraded images. For the experiment shown here,

we generated a degraded image by blurring the true image

with a 7 × 7 square-shaped PSF h and then added Gaussian

noise with variance σ2 = 10−6. The signal to noise ratio

(SNR) of the observed image g was SNR = 10 log10
‖f‖2

Nσ2 =
45dB. We initialized the PSF as a Gaussian shaped func-

tion with variance σ2
hin

= 3. The kernel function was set

to a Gaussian with variance σ2
φ = 0.1 in order to be flexible

enough to model the boundaries of the square. The estimated

real
StGG
StStG
GGG
StGSt
StStSt

Fig. 3. One dimensional slice of true and estimated PSFs.

images for comparison of the algorithms are shown in fig. 2

and the PSFs in fig. 3. For each method we computed the im-

provement in signal to noise ratio of the image (ISNRf =
10 log ‖f−g‖2

‖f−f̂‖2 ) and PSF (ISNRh = 10 log ‖h−hin‖2

‖h−ĥ‖2 ). We

have performed numerous other experiments, both with sim-

ulated and real image data, which cannot be included in this

paper due to space constraints. These experiments also verify

the superiority of the proposed model for BID as compared

to models that use two or more Gaussians for the PSF, the

imaging errors and image prior.

5. CONCLUSIONS

We presented a Bayesian model of the BID problem in which

the PSF was modeled as a superposition of kernel functions.

We used heavy tailed Student-t distributions to model the PSF

weights, image local differences and BID errors in order to

achieve PSF sparseness, reconstruvtion of edges and robust-

ness to BID model errors.Because of the complexity of this

model, the variational framework was used for inference. Ex-

periments demonstrate the advantages of using a heavy tailed

distribution for the PSF mode, the image model and the BID

model errors.
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