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ABSTRACT

Image blur occurs often when using a cell- phone camera 
due to handshakes or jitter. Although there exist many 
motion deblurring algorithms in the literature, the 
computational complexities of these algorithms and the 
assumptions considered make them unsuitable for 
deployment on a cell-phone camera processor. This paper 
presents an image blur reduction algorithm for cell-phone 
cameras having a low computational complexity and 
without making any assumption about the handshake 
motion. This algorithm utilizes one low-exposure image in 
addition to a blurred image to perform a blur reduction 
operation via tonal correction. The developed tonal 
correction approach is adaptive to the scene by taking into 
consideration the brightness and contrast of the blurred 
image. The results obtained indicate the effectiveness of 
this blur reduction algorithm for handshake blurred images 
captured by a cell-phone camera.    

Index Terms — Handshake image blur reduction, image 
stabilization, adaptive tonal correction, cell-phone camera, 
low-exposure image capture.  

1. INTRODUCTION 

When a cell-phone camera is used to capture an image, in 
the presence of handshakes or jitter that often occur, the 
captured image appears blurred. Motion deblurring or blur 
reduction is thus considered to be a highly desirable feature 
on cell-phones. Although many motion deblurring 
algorithms are discussed in the literature, they cannot be 
deployed on a cell-phone processor due to its limited 
memory, space, and processing power. The algorithm 
introduced in this paper is specifically aimed at image blur 
reduction for deployment on a cell-phone processor.  

The existing motion deblurring algorithms can be 
grouped into two main categories: pre-processing and post-
processing algorithms. Most pre-processing algorithms 
involve hardware techniques, e.g. [1]-[5], which demand 
extra hardware to be integrated into a cell-phone. Such 
algorithms are deemed unsuitable for cell-phone 
deployment due to the space and cost constraints. 

On the other hand, post-processing algorithms, e.g. [6]-
[11], utilize an inverse process of blurring via a point 

spread function (PSF) to obtain a deblurred image. In 
general, blind image deconvolution techniques do not 
generate visually acceptable image quality unless the 
motion causing the blur is known and can be parameterized 
by a specific and often a simple motion model, such as 
constant velocity motion or linear harmonic motion as 
discussed in [12]-[14]. Since, in practice, such assumptions 
do not hold, and these algorithms are computationally quite 
demanding, they are not considered suitable for deployment 
on the cell-phone platform. In [15], a computationally 
expensive color detection technique was used to enhance 
images taken at low-exposure setting for blur removal.  

Our solution presented in this paper takes into 
consideration the constraints of the cell-phone platform. 
We utilize only one image that is automatically captured 
electronically at a lower exposure setting immediately after 
an auto-exposure image is taken. Due to its lower exposure 
time, the blur is often removed or significantly reduced. 
However, this is achieved at the expense of getting a darker 
looking image. The challenge here is to enhance the 
appearance of the low-exposure image in a way which 
takes into consideration the characteristics of the blurred 
image. In this paper, we have adopted this approach as it is 
deemed to be suitable for deployment on the cell-phone 
platform noting that it is designed to be computationally 
efficient and not to involve any assumption or prior 
knowledge of the handshake motion. 

The enhancement of a low-exposure image can be 
achieved simply by performing tonal correction.  Tonal 
correction is widely used to adjust the appearance of an 
image on digital display devices and for photo enhancement 
[16]. In what follows, an adaptive tonal correction 
algorithm is introduced to achieve image blur reduction 
based on a low-exposure image. 

2. ADAPTIVE TONAL CORRECTION 

The adaptive tonal correction (ATC) algorithm presented 
here uses the low-exposure or darker looking image as its 
input and enhances its appearance via tonal correction by 
making use of the mean (brightness) and variance (contrast) 
of the original blurred image in an adaptive manner. The 
main contribution here thus consists of an automatic 
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process by which the tonal correction is done.  
Fig. 1 shows a typical tonal correction curve by which 

input intensity values corresponding to the three primary 
colors (R, G, B) can get mapped into the output intensity 
values.  Basically, a tonal correction curve performs 
histogram shifting by moving the mean of the darker input 
image toward the brighter side of the histogram. In order to 
have a single tonal curve parameter to adjust, and also not 
to have any intensity saturation in the output image, the 
following tonal curve equation is considered in our ATC 
algorithm:

og
xxogxf 1)( (1)

where x denotes pixel values of the input image, and  is a 
parameter altering the brightness level. The optimal value 
of  is considered to be the one that makes the brightness 
of the enhanced image equal to the brightness of the blurred 
image.  
     This correction also improves the image contrast. To 
further improve the contrast, a second tonal correction 
curve can be used to match the contrast of the blurred 
image. Among various possible curve functions (tangent-
hyperbolic, odd exponential, rise cosine, logarithmic, and 
arc-tangent), we have considered the following function 
since it requires only one parameter to adjust while not 
causing any intensity saturation:  
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where is a parameter altering the contrast level. The 
optimum value of  is taken to be the one that makes the 
contrast of the enhanced image equal to the contrast of the 
blurred image. To obtain the optimum parameter values in a 
computationally efficient manner, the binary search
approach [17] is used. 

3. COMPUTATIONAL COMPLEXITY 

A typical deblurring algorithm involves two-dimensional 
deconvolution, which is not computationally efficient to 
perform on a cell-phone processor. For an image of size  
(NxM), a typical deconvolution algorithm requires 
4(N+M)NM operations. While the tonal correction curves 
can be simply implemented via look-up tables. The two 
tonal curves can also be combined into one composite 
curve. Thus, only one look-up table is in fact needed to map 
the input into the output intensity values. The optimal 
parameters are often reached within 5 iterations. Therefore, 
a typical run for ATC involves 2x5 look-up tables and 
10(MN) operations, noting that on most cell-phone 
processors it takes one clock cycle per look-up table. In 
other words, for a 256x256 image, the ATC algorithm takes 
200 times fewer operations than a typical image 
deconvolution algorithm.
     Furthermore, the memory requirement of ATC is 
relatively low since memory space is only needed for the 

look-up tables. Every tonal correction curve 
for or needs 256x2 bytes of memory space for an 8-bit 
quantized image. In this study, was varied from 1~20 
with 1.0 step size and was varied from 1~5 with 0.3 step 
size. This made the required number of curves about 300, 
or the required memory space less than 150 Kbytes. 

4. ATC EFFECTIVENESS 

Ideally, any image blur can get removed by keep lowering 
the exposure time or level. Obviously, in practice, it is not 
possible to lower the exposure time indefinitely because 
ATC introduces an unacceptable level of color distortion if 
the exposure level is set too low. In addition, the image 
noise may become more noticeable. These issues are 
discussed in the following subsections.  

4.1. Color distortion 
Color distortion is usually measured by the CIELAB color 
difference E given by (3), which is the Euclidean distance 
between the true color image and the distorted one in the 
L*a*b* color space [18], 
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 where *L , *a , and *b  are the three color component 
differences in the L*a*b* color space. As discussed in [19], 

E can be classified into three different levels to reflect the 
degree of color distortion as perceived by humans. As listed 
in Table 1, the color difference is hardly perceptible when 

E  is smaller than 3; is perceptible but remains acceptable 
when E  is between 3 and 6; and is usually not acceptable 
when E  is larger than 6.  

Table 1. Color distortion visual quality [19]. 
E <3 Hardly perceptible

3< E <6 Perceptible but acceptable
E >6 Not acceptable

4.2. Image noise 
Typical SNRs in images captured by a digital camera is 
shown to vary from 10dB to 40dB depending on the ISO 
setting [20]. Here, both the blurred and low-exposure 
images are assumed to have been captured with the same 
ISO setting.  

As discussed in [21], applying ATC to the low-exposure 
image alters the noise power as follows: 

dxxpxgxfout )()()( 22                      (4) 

where )(xp denotes the PDF of the image plus noise. Since 
neither f(x) nor g(x) is a linear function, equation (4) does 
not have an analytic solution. In most cases, the application 
of g(x) is not required. Therefore, by considering only f(x),
for small ranges of x, f(x) can be estimated by a linear 
function. Equation (5) gives the slope of f(x) in a small 
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range of x close to x1,
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for f(x)=mx+b. Consequently, the noise power in the output 
image can be written as  

222
inout m                                       (6) 

Since the same relationship holds for the image power, for 
all practical purposes, the SNR in the ATC enhanced image 
stays the same as the blurred image. Therefore, as 
compared to image noise, color distortion plays a more 
prominent role in the effectiveness of ATC. 

5. EXPERIMENTAL RESULTS  

     A study was done based on 240 images corresponding to 
12 different scenes to obtain the effectiveness of ATC for 
blur reduction or image stabilization. Fig. 2 shows the 
average amount of color distortion caused by ATC for 
different amounts of exposure time. As shown in this 
figure, an exposure level reduction of 20% generated no 
perceivable visual color distortion. An exposure setting of 
30% generated color distortion in the acceptable range. Fig. 
2 also shows the average and brightness increase by 
ATC for different exposure levels. The ATC processing 
with >10 produced color distortion higher than the 
acceptable level. Fig. 3 illustrates three sample captured 
images (blurred and low-exposure at an exposure setting of 
one-third the nominal). This figure also shows the outcome 
of our blur removal ATC algorithm. 

6. CONCLUSION 

In this paper, an adaptive tonal correction algorithm is 
introduced to reduce handjitter blur in images captured by a 
cell-phone camera based on a low-exposure image that is 
captured electronicly immediately after an image is taken. 
The main attributes of this algorithm are its low 
computational complexity, adaptiveness to the brightness 
and contrast of the scene captured, making no assumption 
about the motion blur, and not requiring any manual 
intervention. It has been shown that the effectiveness of this 
algorithm is limited by the introduced color distortion as a 
result of the low-exposure setting. In our experimentation, 
one-third reduction in the exposure setting lead to visually 
acceptable levels of color distortion.
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Fig. 2. Amount of color distortion versus percentage of exposure 
time decrease or blur reduction.   

Fig. 1. Tonal correction curve for brightness enhancement.    

Fig.  3. Left column: handshake blurred images - center column: low-exposure images - right column: ATC enhanced images. 
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