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ABSTRACT

The objective of image stabilization is to prevent or remove the
motion blur degradation from images. We introduce a new approach
to image stabilization based on combining information available in
two differently exposed images of the same scene. In addition to
the image normally captured by the system, with an exposure time
determined by the illumination conditions, a very shortly exposed
image is also acquired. The difference between the exposure times
of the two images determines differences in their degradations which
are exploited in order to recover the original image of the scene. We
formulate the problem as a maximum a posteriori (MAP) estimation
based on the degradation models of the two observed images, as
well as by imposing an edge-preserving image prior. The proposed
method is demonstrated through a series of simulation experiments,
and visual examples on natural images.

Index Terms— image stabilization, motion blur, image restora-
tion,exposure time, image deconvolution

1. INTRODUCTION

The problem addressed by image stabilization dates since the begin-
ning of photography, and it is basically caused by the fact that any
known image sensor needs to have the image projected on it during
a period of time called integration (exposure) time. Any motion of
the camera during this time causes a shift of the image projected on
the sensor resulting in a degradation of the final image, called mo-
tion blur. This image degradation dramatically influences the user
perception of the imaging product performance, and hence the man-
ufacturers prioritize their efforts for developing robust and efficient
solutions to this problem. The main driven factors motivating this
work include:

• The need for longer integration times in order to cope with
smaller pixel areas that result from sensor miniaturization and
resolution increase requirements. Thus, the smaller the pixel
area the less photons/second could be captured by the pixel
and hence a longer integration time is needed for good results.

• The need for longer integration times in order to acquire bet-
ter pictures in low light conditions.

• The difficulty to avoid unwanted motion during the integra-
tion time when using high zoom, and/or small hand-held de-
vices.

Various methods for removing or preventing the motion blur
degradation have been proposed. The existent solutions can be di-
vided in two categories based on whether they are aiming to cor-
rect or to prevent the motion blur degradation. In the first category

are those solutions that are aiming for restoring a motion blurred
image shot captured during a longer exposure time. If the point
spread function (PSF) of the motion blur is known then the origi-
nal image could be restored, up to some level of accuracy, by ap-
plying an image deconvolution approach [1]. However, in practice
the motion blur PSF is unknown, since its structure is determined by
the arbitrary camera motion during the exposure time. The lack of
knowledge about the blur PSF suggests the use of blind deconvolu-
tion approaches in order to restore the motion blurred images [2, 3].
Unfortunately, most of these methods rely on rather simple motion
models, e.g. linear constant speed motion, and hence their potential
use in consumer products is rather limited. One way to estimate the
motion blur PSF is based on measurements of the camera motion
during the exposure time. Such an approach have been introduced
in [4], where the authors proposed the use of an extra camera in or-
der to acquire motion information during the exposure time of the
principal camera.

In order to cope with the unknown motion blur process, design-
ers have adopted solutions able to prevent such blur for happening
in the first place. In this category are included all optical image sta-
bilization (OIS) solutions adopted nowadays by many camera man-
ufactures. These solutions are utilizing inertial senors (gyroscopes)
in order to measure the camera motion, following then to cancel the
effect of this motion by moving either the image sensor, or some
optical element in the opposite direction. Apart of cost and size dis-
advantages associated with these solutions, their are less effective
for longer exposure times when the mechanism may drift, produc-
ing motion blurred images. A different method, based on specially
designed CMOS sensors has been proposed in [5]. The method uti-
lizes the possibility to independently control the exposure time of
each image pixel, following to prevent motion blur by interrupting
the integration time of those pixels where motion is detected.

In a previous work [6], we introduced an approach to image sta-
bilization based on fussing multiple short exposed image frames of
the same scene. Due to their short exposure the individual image
frames are less affected by motion blur and more affected by noise.
The camera motion, that would otherwise blur a long exposed im-
age, determines misalignment between the captured image frames,
and hence its effect can be canceled by registering and fusing the
image frames. Due to various limitations in computational resources
a smaller number of image frames might be preferable in some sys-
tems. In this paper we address such a solution where the number
of frames used for image stabilization is reduced to two. One of the
image frames is captured with a normal exposure time in the given il-
lumination conditions, and the second image is captured with a very
short exposure time. Due to differences in their exposure times the
two images will be degraded differently. Thus, the underexposed
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image is mainly affected by noise, whereas the normal-exposed im-
age might be affected by motion blur. In our previous work [7], we
presented an approach to motion blur PSF (point spread function)
identification based on two differently exposed image frames. The
estimated PSF was then used to recover the original image by apply-
ing a ML (maximum likelihood) de-convolution algorithm [1]. In
this paper we present a further development of our previous work,
aiming for improving the sensitivity to errors in motion blur PSF
estimation, by designing a combined MAP (maximum a posteriori)
estimation of both latent image and motion blur PSF.

2. THE PROPOSED METHOD

Let us denote the two observed images of the scene by g1 and g2

respectively. In the following we assume that the two images are
registered one with respect to another such that at any pixel coordi-
nate x = (x, y), the values g1(x) and g2(x) denote different repre-
sentations of the same physical area of the scene. It is to be noted
here that, the registration of the two images must be able to cope
with their different degradations, and hence a registration algorithm
robust to such image degradation is needed. In our work we used the
algorithm proposed in [8].

The degradation models of the two observed images driven by
their different exposure times, are formulated as follows. The normal
exposed image (g1) is a representation of the original image f , that
might be affected by motion blur, as well as a zero mean additive
noise:

g1(x) = d(x) ∗ f(x) + n1(x), (1)

where d denotes the motion blur PSF (point spread function), n1

denotes the additive zero mean noise term, and ∗ stands for two-
dimensional convolution operator.

The additional, short exposed image g2, is a noisy representation
of the original image that is assumed to be unaffected by motion blur

αe(x) ∗ g2(x) = f(x) + n2(x), (2)

whereα is a luminance scale factor that accounts for the lower bright-
ness of g2 due to shorter exposure, e(x) is a point spread function
that, in accordance to the assumed model is the Dirac delta function
(δ(x)), and n2 denotes an additive noise. The additional point spread
function e(x) was introduced here in order to model the residual
blurring between g2 and intermediate estimates of the latent image
f . For tractability, both noise terms n1 and n2 are assume zero mean
Gaussian with variances σ2

1 and σ2
2 . Also, we note that the two noise

terms should have very different powers due to different exposure
times of the two observed images, i.e. σ2

1 � σ2
2 .

The joint posterior probability density function (p.d.f.) of the
original image f and blur PSFs d and e is given by

p(f, d, e|g1, g2) ∼ p(g1|f, d)p(g2|f, e)p(f)p(d, e), (3)

from where retaining only the terms which depend of f , d or e we
obtain the MAP objective function

Q(f, d, e) = − log p(g1|f, d)− log p(g2|f, e)

− log p(f)− log p(d, e). (4)

The first two terms of (4) can be derived from the observation
models formulated in (1) and (2):

− log p(g1|f, d) ∼ λ1/2
∑

x∈Ω

[g1(x)− f(x) ∗ d(x)]2 ,

− log p(g2|f, e) ∼ λ2/2
∑

x∈Ω

[αe(x) ∗ g2(x)− f(x)]2 , (5)

where λi = σ−2
i , i = 1, 2, and Ω denotes the 2D image domain.

In order to avoid over-smoothing the image, we adopt a discrete
form of the Total Variation (TV) prior for the latent image

− log p(f) ∼ γ
∑

x∈Ω

|∇f(x)| (6)

where∇ stands for spatial gradient operator, and γ is the prior weight
which balances our confidence between the prior and the observa-
tions. In our work we assumed a Gamma distribution for the prior
weight γ, i.e. γ ∼ Γ(γ|a, b), following to re-estimate the parame-
ter at each iteration step based on the current estimate of the latent
image.

The model that we used for the two PSFs was selected such that
to be optimized when e becomes identical to Dirac delta function.
This is:

− log p(d, e) ∼ β1/2
∑

x∈Ω

[d(x) ∗ e(x)− d(x)]2

+ β2/2
∑

x∈Ω

[e(x)− δ(x)]2 , (7)

where β1 and β2 are positive values weighting the importance of the
PSF prior.

Joining (5), (6) and (7) we obtain the final form of the objective
function, whose optimization is achieved as shown in the following
algorithm.

Algorithm 1.
Input: Registered images g1, g2, and a rough estimate of the size of
PSF support.
Output: The latent image f
Initialization: k = 0, f (k) = g2, εk = ∞
Iteration:
1. Minimize with fix f : d̂, ê ← argmind,eQ(f

(k), d, e)

2. Update PSF: d(k)(x) = d̂(x) ∗ ê(x)

3. Enhance d(k) by removing noise and normalization
4. Minimize with fix d: f (k+1) ← argminfQ(f, d(k), δ), by
iterating from initial guess f = g1

5. Calculate εk+1 = ||d ∗ f (k+1) − g1||

6. If εk+1 > εk, then stop iteration and return f = f (k)

In the first step of the algorithm the objective function is mini-
mized with respect to d and e. This can be achieved by solving the
system of equations obtained when equating with zero the gradients
of Q with respect to d and e. For efficiency we implemented this
step in the Fourier domain.

The second step of the algorithm can be also performed in the
Fourier domain following then to recover the spatial domain repre-
sentation of the blur PSF by inverse Fourier transform, based also on
the PSF support size estimate provided to the algorithm.

The third step of the algorithm aims for enhancing the spatial
representation (d(k)) of the blur PSF , by canceling its noisy coef-
ficients. In order to distinguish the noisy coefficients from the real
PSF coefficients we analyze the 2D PSF signal d(k) at different levels
of smoothness, obtained by iterative low pass filtering. A threshold is
established at each level based on the standard deviation at that level,
and all coefficient that are bellow the threshold are canceled. Finally,
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Fig. 1. Simulated PSFs used in the experiments.

we cancel in d(k) all coefficients that have been canceled at any one
of the levels considered. The remaining non-zero coefficients of d(k)

are then normalized such that to some up to unity, in accordance to
the energy conservation assumption, i.e.

∑
d(x) = 1.

The fourth step of the proposed algorithm consists of minimiz-
ing the objective function with respect to f , for the given PSF. The
gradient of the objective function with respect to f is given by

∇fQ = λ1

[
f(x) ∗ d(k)(x)− g1(x)

]
∗ d(k)(−x)

+ λ2 [f(x)− αg2(x)] + γ∇ [w(x)∇f(x)] , (8)

where w(x) = 1/|∇f(x)| is the diffusive coefficient. In our work
we minimize the objective function with respect to f by applying
the conjugate gradient (CG) iteration and lagging the diffusive coef-
ficient one iteration behind. Convergence is relatively fast due to CG
properties, and we stop the CG iterations when the relative change in
the objective function between two consecutive iterations is smaller
than a given threshold. It is important to emphasize also that the
prior parameter γ is updated in each iteration based on the latent
image estimated so far. Thus at iteration i we have

γi =
a − 1

b+ (1/N)
∑

x∈Ω
|∇fi(x)|

, (9)

where N denotes the number of pixels in the image, and a, b are the
parameters of the Gamma distribution imposed for the weight γ.

3. EXPERIMENTS

The proposed algorithm has been evaluated through a series of ex-
periments including numerical simulations as well as visual inspec-
tions on natural images. The values of the algorithmic parameters
used in our experiments are selected as follows. The parameter α
is estimated as the ratio between the average luminance of the two
input images. The parameters of the prior Gamma distribution have
been fixed to a = 4 and b = 1. The parameters for PSF priors are
β1 = β2 = 1. The PSF support was assumed of size 31 × 31 in all
experiments.

In our simulation experiments we used ”Lenna” and ”Camera-
man” images corrupted by various levels of noise, and different blur
PSFs in order to simulate differently exposed image pairs. The mo-
tion blur PSFs used in these simulations are shown in Fig. 1. The
blurs have nonlinear trajectories and they correspond to motions of
different velocities. Thus, some portions of PSF1 are less promi-
nent corresponding to fast motion moments, whereas PSF2 is more
emphasized corresponding to a slow motion speed.

The short exposed image in each simulation was created by adding
zero mean Gaussian noise to the original image using ”imnoise” rou-

(a) (b)

(c)

(d) (e)

Fig. 2. Visual comparison: (a,b) the simulated short and long ex-
posed images corrupted by noise (STD 0.1), and blur (PSF1) re-
spectively, (c) the result of the proposed algorithm, (d) Matlab ”de-
convblind”, and (e) ML deconvolution.

tine of Matlab, and the normal exposed image was simulated by con-
volving the original image with a certain blur PSF.

Table 1 summarizes the results obtained in several simulations
on both images. A number of 10 simulations have been done for
each line in the table by using different realizations of the additive
noise which affects the short exposed image. The average and stan-
dard deviation of the PSNRs (Peak Signal to Noise Ratios) of the
restored images are shown in the table. The improvement in the
PSNR, denoted IPSNR in the table, was calculated between the re-
stored image and the highest PSNR input image. We note that the
algorithm is able to achieve an improvement of several decibels even
for relatively large levels of noise present in the short exposed im-
age. Moreover, due to the use of TV image prior the result is more
robust to errors in PSF estimation, canceling most of the artifacts
commonly generated by an ML de-convolution algorithm, as shown
in Fig. 2 (e). The figure shows also a visual comparison between the
result achieved by the proposed algorithm (Fig. 2 (c)), and the result
achieved by using the routine ”deconvblind” of Matlab (Fig. 2 (d)).
For this test we provided to all methods the first estimate of the blur
PSF produced by our algorithm, and we selected the best result, in
the PSNR sense, provided by the Matlab routine in 200 iterations.

Two visual examples on real images captured with a digital cam-
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Fig. 3. Real image example: (a,b) the short and normal exposed
images respectively, (c) the estimated PSF, (d) the restored image.

Blur PSF Noise STD PSNR (dB) IPSNR (dB)
(normalized) avg (std)

Cameraman
PSF1 0.1 26.4 (0.7) 5.8
PSF1 0.2 25.4 (1.5) 6.3
PSF2 0.1 27.7 (1.0) 7.1
PSF2 0.2 26.8 (0.7) 7.3

Lenna
PSF1 0.1 31.3 (0.2) 5.3
PSF1 0.2 29.5 (0.1) 7.1
PSF2 0.1 31.5 (1.4) 5.5
PSF2 0.2 29.3 (0.8) 6.2

Table 1. The results of simulation experiments.

era are shown in Fig. 3, and Fig. 4. In both cases the shutter speed
o the camera for the short and normal exposed images have been set
at 1/100 sec, and 1 sec respectively.

4. CONCLUSIONS

We presented a method for image restoration frommotion blur degra-
dation based on the availability of two differently exposed image
shots of the same scene. The method relies onMAP estimation of the
latent image of the scene by exploiting the differences in the degra-
dation models of the two input images. The proposed algorithm has
been demonstrated through a series of experiments including numer-
ical simulations and visual examples on real images.
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