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ABSTRACT

In this paper we present a new Bayesian methodology for the
restoration of blurred and noisy images. Bayesian methods rely on
image priors that encapsulate prior image knowledge and avoid the
ill-posedness of the image restoration problems. Some of these pri-
ors depend on global variance parameters, unable to account for local
characteristics. Here we first use variational methods to approximate
probability posterior distributions for the global model to later use
those distributions to define local and more realistic image models
which lead to better restored images as it is shown in the experimen-
tal section.

Index Terms— Image restoration, regularization, Bayesian mo-
dels, parameter estimation, variational methods.

1. INTRODUCTION

A standard formulation of the image degradation model is given in
lexicographic form by [1]

y = Hx + n , (1)

where the P × 1 vectors x, y, and n represent, respectively, the
original image, the available noisy and blurred image, and the white
Gaussian noise with independent elements of variance σ2

n
= β−1,

and H represents the known blurring matrix. The images are as-
sumed to be of size m × n, with P = m × n. The restoration
problem considered here is to find an estimate of x from y and H

and some knowledge about n and possibly x.
Bayesian image restoration techniques are based on the intro-

duction of a prior image model on x whose aim is to encapsulate our
prior image knowledge and consequently to avoid the ill-posedness
of the image restoration problem. Image prior models like the ones
based on Simultaneous Auto-Regression (SAR) [2], Conditional Au-
to-Regression (CAR) [3] or Total Variation (TV) [4] depend on a
global parameter which is related to the global variance of the image
model. However, for most images it is not realistic to assume that
the variance of the model is the same for the whole image and con-
sequently it should be adapted to its local characteristics. In this
paper we propose a two-step approach towards the construction of
local image models. In the first step a global image model is used
along with variational methods to approximate the probability pos-
terior distribution of the image and global parameters. In the second
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step these distributions are used to define local image models which
lead to improved quality restored images.

The paper is organized as follows. In section 2 we discuss the
global model and inference we use as a first step in the construc-
tion of the local modelling and inference. Then the construction and
analysis of the local model is performed in section 3 . Experimental
results are described in section 4. Finally, section 5 concludes the
paper.

2. GLOBAL BAYESIANMODELING AND INFERENCE

The Bayesian formulation of our global image restoration problem
requires the definition of the joint distribution p(Ωg,x,y) of the
observation y, the unknown image x, and the hyperparameters Ωg .
Then, the posterior distribution of the unknowns given the observed
image p(Ωg ,x|y) has to be calculated and used to estimate the un-
known image and hyperparameters.

Given the degradation model of Eq. (1), the distribution of the
observed image y given x and a set of parameters Ωg is

p(y|x, β) ∝ β
P

2 exp

[
−

1

2
β ‖ y −Hx ‖2

]
. (2)

In our global image model we assume that the difference be-
tween the gray level at location i and the mean of the gray levels
at the four closest neighbors of pixel i is a Gaussian random vari-
able with zero mean and variance α−1. We also assume that all the
differences are independent. Then we have that

p(x|α) ∝ α
P

2 exp

[
−

1

2
α ‖ Cx ‖2

]
, (3)

whereC denotes the Laplacian operator.
Finally, a flat prior p(α, β) is assumed on the unknown parame-

ters α and β.
The Bayesian paradigm dictates that inference on (α, β,x) sho-

uld be based on

p(α, β,x|y) =
p(α, β,y, x)

p(y)
. (4)

It is difficult to evaluate this distribution and therefore we apply
variational methods to approximate it by the distribution q(α, β,x).
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The variational criterion used to find q(α,β, x) is the minimiza-
tion of the Kullback-Leibler divergence, given by [5, 6]

CKL(q(α, β,x) ‖ p(α, β,x|y))

=

∫
α,β,x

q(α, β,x) log

(
q(α, β,x)

p(α, β,x|y)

)
dαdβdx

=

∫
α,β,x

q(α, β,x) log

(
q(α,β, x)

p(α, β,x,y)

)
dαdβdx + const,

(5)

which is always non negative and equal to zero only when q(α, β, x)
and p(α, β,x|y) coincide.

We choose to approximate p(α, β,x|y) by the distribution

q(α, β,x) = q(α, β)q(x), (6)

where q(x) and q(α, β) denote distributions on x and α, β respecti-
vely. We propose the following iterative procedure to find q(α, β, x).

Algorithm 1
Given q1(α, β), an initial estimate of the distribution q(α,β),

for k = 1, 2, . . . until a stopping criterion is met:

1. Find

qk(x) = arg min
q(x)

CKL(qk(α, β)q(x) ‖ p(α, β,x|y)) (7)

2. Find

qk+1(α, β)=arg min
q(α,β)

CKL(q(α,β)qk(x)‖p(α,β,x|y)).

(8)

As stopping criterion of the above iterations, the convergence of
the parameters defining the distributions qk(x) and qk+1(α, β) can
be used.

Differentiating the function to be minimized on the right hand
side of Eq. (7) with respect to q(x) and setting it equal to zero we
obtain

qk(x) ∝ expE[log p(α, β,x,y)]qk(α,β), (9)

that is, qk(x) is a normal distribution

qk(x) = N
(
x | Ek[x], covk[x]

)
. (10)

with
E

k[x] = cov
k[x]βk

H
t
y , (11)

and (
cov

k[x]
)
−1

= αk
C

t
C + βk

H
t
H . (12)

where

E[α]qk(α,β) = αk , (13)

E[β]qk(α,β) = βk. (14)

Differentiating the function to be minimized on the right hand
side of Eq. (8) with respect to q(α,β) and setting it equal to zero we
obtain

qk+1(α, β) = qk+1(α)qk+1(β) (15)
with

qk+1(α) = Γ

(
α | 1 +

P

2
,

1

2
E

[
‖ Cx ‖2

]
qk(x)

)
, (16)

qk+1(β) = Γ

(
β | 1+

P

2
,

1

2
E[‖y−Hx‖2]qk(x))

)
, (17)

where for a positive quantity the Gamma distribution is defined by

Γ(ω|ao
ω, bo

ω) ∝ ωao

ω
−1 exp[−bo

ω ω], (18)

where the ω > 0 denotes a hyperparameter, and bo
ω > 0 and ao

ω >
0 are parameters of the distribution. This Gamma distribution has
the following mean, mode (which only exists when ao

ω > 1), and
variance

E[ω] =
ao

ω

bo
ω

, Mode[ω] =
ao

ω − 1

bo
ω

, var[ω] =
ao

ω

(bo
ω)2

. (19)

If we now want to obtain point estimates of the image and the
parameters we can use

α̂ = lim
k→∞

E
k[α], β̂ = lim

k→∞
E

k[β], x̂ = lim
k→∞

E
k[x]. (20)

Note that in this case the derived algorithm is equivalent to selecting
α̂ and β̂ as the mean of p(α, β | y) and then selecting maximum a
posteriori image estimate for those parameters. Note also that the
mode of p(α, β | y) can instead be used. However, the mean and
mode of p(α, β | y) almost coincide for large P .

3. LOCAL BAYESIANMODELING AND INFERENCE

Once we have obtained a global model for restoring the image and
estimating the parameters we refine it with local image information.
To model the variation in the original image locally we assume that
εi, the difference between the gray level at location i and the mean of
the gray levels at its four closest neighbors, which can be expressed
using the Laplacian operatorC as

εi = (Cx)i , for i = 1, 2, . . . , P , (21)

is a Gaussian random variable with zero mean and variance α−1
i [7].

We also assume that the εi’s, i = 1, . . . , P are independent. Then if

ᾱ = (α1, . . . , αP ) (22)

we have

pl(x|ᾱ) ∝

(
P∏

i=1

α
1

2

i

)
exp

[
−

1

2

P∑
i=1

αiε
2
i

]
. (23)

Let us now consider the observation model. We already have an
estimate β̂ of β which has been provided by the global model and
thus we use the observation model

pl(y|x) ∝ β̂
P

2 exp

[
−

1

2
β̂ ‖ y −Hx ‖2

]
, (24)

where β̂ is treated from now on as a known parameter (we note here
that we could also provide local estimates for β by following similar
steps to the ones followed next for α).

We now want to use

q(α) = lim
k→∞

qk(α) (25)

from Eq. (16) to define a prior model for the αi’s, i = 1, . . . , P . To
do so we first define

M = lim
k→∞

E
[
‖ Cx ‖2

]
qk(x)

(26)
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and observe that

E[α]q(α) =
P/2 + 1

M/2
≈

P/2

M/2
(27)

var[α]q(α) =
P/2 + 1

[M/2]2
≈

P/2

[M/2]2
. (28)

Let us now assume that

α =
1

P

∑
i

αi (29)

and that the αi’s, i = 1, . . . , P are independent and identically dis-
tributed. Then we have that

E[αi] ≈
P/2

M/2
and var[αi] ≈

P 2/2

[M/2]2
. (30)

Now fitting a Gamma distribution to each αi with the mean and vari-
ance above we can use as prior model for the vector ᾱ

pl(ᾱ) = pl(α1, . . . , αP ) =
∏

i

pl(αi) (31)

where
pl(αi) ∝ α

1/2−1
i exp

[
−αi

M

2P

]
. (32)

Finally we have the global distribution given by

pl(ᾱ,x,y) = pl(ᾱ)pl(x|ᾱ)pl(y|x) (33)

We now approximate pl(ᾱ,x|y) by the distribution

ql(ᾱ,x) = ql(ᾱ)ql(x), (34)

where ql(x) and ql(ᾱ) denote respectively distributions on x and ᾱ,
and propose the following iterative procedure to find ql(ᾱ,x).

Algorithm 2
Given q1

l (ᾱ), an initial estimate of the distribution ql(ᾱ),
for k = 1, 2, . . . until a stopping criterion is met:

1. Find

qk
l (x) = arg min

ql(x)
CKL(qk

l (ᾱ)ql(x) ‖ pl(ᾱ,x|y)), (35)

2. Find

qk+1
l (ᾱ) = arg min

ql(ᾱ)
CKL(ql(ᾱ), qk

l (x) ‖ pl(ᾱ,x|y)).

(36)

As stopping criterion of the above iterations, the convergence of
the parameters defining the distributions qk

l (x) and qk+1
l (ᾱ) can be

used.
To explicitly calculate the distributions qk

l (x) and qk+1
l (ᾱ) we

use the same procedure as the one described for algorithm 1 to find
qk(x) and qk+1(α, β). Let

E[αi]qk

l
(ᾱ) = αk

i , for i = 1, 2, . . . , P (37)

and
ᾱk = (αk

1 , αk
2 , . . . , αk

P ). (38)
Then

qk
l (x) = N

(
x | Ek

l [x], covk
l [x]

)
. (39)

where
E

k
l [x] = cov

k
l [x]β̂H

t
y , (40)

and (
cov

k
l [x]

)
−1

= C
tdiag(ᾱk)C + β̂H

t
H . (41)

Furthermore

qk+1
l (ᾱ) =

[
P∏

i=1

qk+1
l (αi)

]
, (42)

with
qk+1(αi) = Γ

(
αi | 1,

1

2
(
M

P
+ E[ε2i ]qk

l
(x))

)
(43)

where

E[ε2i ]qk(x) = E
k
l [x]

t
C

t
u(i)CE

k
l [x] + tr[Ct

u(i)Ccov
k
l [x]] ,

(44)
and u(i) is a matrix with only one element distinct from zero,
u(i)ii = 1.

Note that utilizing the mean of the Gamma distribution we have

1

αk
i

=
1

2

M

P
+

1

2
E[ε2i ]qk

l
(x) , (45)

that is, the local image variance at pixel i is the average of the global
variance provided by the global restoration model and the local vari-
ance provided by the restoration.

If we now want to obtain point estimates of the image and the
parameters we can use

ˆ̄α = lim
k→∞

E
k
l [ᾱ], x̂ = lim

k→∞
E

k
l [x]. (46)

(a) (b)

(c) (d)

Fig. 1. Image set used in the experiments.
4. EXPERIMENTAL RESULTS

In this section we will compare the global model (Algorithm I), the
local model (Algorithm II) and the method consisting on replacing
E[ε2i ]qk

l
(x) in Eq. (43) by the mean of local variance of pixel i and

the local variances of its four closet neighbors (Algorithm III).
TheMatlab implementation of the Preconditioned Conjugate Gra-

dients method with preconditioning by an incomplete Cholesky fac-
torization has been used to calculate the mean value of qk(x). To
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Method I Method II Method III
blur img 10 dB 20dB 30dB 10 dB 20dB 30dB 10 dB 20dB 30dB
G a 8.64 8.42 4.56 8.73 8.49 4.19 8.73 8.48 4.63

b 9.34 10.62 6.90 9.35 10.67 6.71 9.35 10.67 7.03
c 10.54 10.44 5.29 10.52 10.46 5.28 10.52 10.46 5.49
d 6.86 8.53 6.84 6.96 8.62 6.63 6.96 8.62 7.05

U a 8.54 6.85 2.98 8.60 6.86 2.99 8.60 6.85 2.99
b 9.55 10.02 5.01 9.57 10.02 5.02 9.57 10.02 5.02
c 10.64 9.45 3.86 10.60 9.45 3.87 10.60 9.45 3.87
d 6.86 8.33 4.79 6.92 8.37 4.81 6.92 8.37 4.81

H a 8.75 8.30 4.13 8.82 8.35 3.59 8.82 8.35 4.14
b 9.69 10.33 5.89 9.72 10.36 5.70 9.72 10.36 5.93
c 10.67 10.46 5.28 10.64 10.48 3.99 10.64 10.48 5.44
d 6.90 8.51 6.44 6.98 8.58 5.46 6.98 8.58 6.51

Table 1. ΔSNR (dB) obtained by the three methods when restoring the images in Fig. 1(a-d), degraded with blurs: Gaussian 5x5 (G), Uniform
7x7 (U), and Horizontal displacement of 5 pixels (H).

(a) (b)

(c) (d)

Fig. 2. (a) Image in Fig. 1(b) degraded by motion blur and additive
noise of 30 dB. Its restorations using Algorithm I (b), Algorithm II
(c), and Algorithm III (d).

calculate the trace in Eq. (44) diag(αk) is replaced by
∑

i
αk

i

N
I, thus

allowing for the calculation of the local variances using the Fourier
Transform. The actual implementations of Algorithms II and III take
9 secs per iteration step to execute on a 3,4 Mhz intel Xeon desktop
PC, for images of size 128 × 128, and the blurs used in the experi-
ments. Algorithm 1 can be implemented in the frequency domain in
0.016 sec per iteration.

The proposed Algorithms have been tested on the set of 128 ×
128 images shown in Fig. 1. Three kinds of blurs have been uti-
lized: Gaussian 3 × 3, uniform 7 × 7 and horizontal motion with a
displacement of 5 pixels. Gaussian white noise has been added to ob-
tain degraded images with signal to noise ratios of 10 dB, 20 dB and
30 dB, respectively. The stopping criterion for the three algorithms
was ‖ E[ᾱ]qk(x) −E[ᾱ]qk−1(x) ‖

2 / ‖ E[ᾱ]qk−1(x) ‖
2< 10−6.

Table 1 shows the improvement SNR (ΔSNR) values of the dif-
ferent reconstructions applying Algorithms I, II and III. In most

cases the local variability of the prior variances improves the resto-
ration quality.

Figure 2(a) shows the image in Fig. 1(b) degraded by motion
blur and noise (30 dB). The restoration resulting from the application
of Algorithms I, II, and III, are shown in Figs. 2(b-d), respectively.
In Fig. 2(c) annoying black or white spots in regions of fluctuating
luminosity are observed. This problem also appears in other restora-
tions by Algorithm II. In Fig. 2(d) this problem disappears.

5. CONCLUSIONS
In this paper a new Bayesian methodology for the restoration of
blurred and noisy images has been developed. This methodology
starts by using a global model whose probability posterior distribu-
tion has been approximated by applying variational methods. This
approximating probability distribution is used to define a more real-
istic local image model, with spatially dependent prior variances.
The new local model better captures the non-homogeneity of the
image field, that leading to a better restoration.
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