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ABSTRACT
The Variational Bayesian approach has recently been proposed

to tackle the blind image restoration (BIR) problem. We consider ex-
tending the procedures to include realistic boundary modelling and
non-stationary image restoration. Correctly modelling the bound-
aries is essential for achieving accurate blind restorations of photo-
graphic images, whilst nonstationary models allow for better adapta-
tion to local image features, and therefore improvements in quality.

Index Terms— Blind Deconvolution, Boundary modelling, Non-
stationary Image models, Variational Bayesian methods

1. INTRODUCTION

In blind image restoration (BIR) we are concerned with estimating
both the original image from a blurred observation, and the blur that
caused it. Often we also wish automatic estimation of model param-
eters controlling the restoration. When the degree of uncertainty is
great, as here, it is necessary to impose as much structure as possi-
ble representing our prior beliefs to give meaningful solutions to this
ill-posed problem. This may be done robustly and effectively with a
hierarchical Bayesian model.

In the Bayesian framework we introduce prior models for the
unknown parameters, which in turn depend on hyperparameters. A
further stage in the hierarchical Bayesian framework is to regard the
hyperparameters as unknown variables and model our prior knowl-
edge of their distributions with hyperpriors. This abstraction allows
for greater robustness of estimates when we are less confident in the
observations and the hyperparameters themselves.

Under this framework several restoration options may be con-
sidered; a full review of BIR methods may be found in [1]. In this
work we consider using the variational Bayesian (VB) approach; this
has been recently applied to the BIR problem [2], using a station-
ary simultaneous autoregression (SAR) model. However, real pho-
tographic images clearly contain local features; investigations sug-
gest that using a nonstationary model both aids accurate blur iden-
tification [3], and improves the restored image [4]. In this work we
consider both aspects using the VB approach.

Furthermore, to deal correctly with blurred photographic im-
ages, we use an observation model that takes into account bound-
ary effects. These have long plagued image restoration of natural
scenes, with a variety of ad-hoc schemes devised to combat the ring-
ing artefacts at the borders that they introduce. Whilst these schemes
may visually suppress the artefacts, in an iterative BIR setting they
can hinder correct estimation of the blur. These artefacts occur due
to objects outside the observed image canvas being convolved into
the blurred image (hence these problems are often negligible in as-
tronomical and medical imaging, but critical for photographs). Here

(a) (b)

Fig. 1. (a) The extended image canvas R+, boundary region R0,

and observation regionR. R+ is of size {m+, n+} = {m + mh −
1, n+nh−1}, since the PSF is assumed to be zero outside a support

of size mh × nh. (b) A segmentation of R+, with a region Rr , its

border pixelsRrb, and their unionRr+ shown.

we follow the full Bayesian treatment by incorporating them into the
extended observation model (see [5] for a similar scheme).

We begin in §2 by describing the problem and the models pro-
posed to tackle it. In §3 we describe the VB approach to parameter
estimation, and in §4 its application to the models used. In order
to incorporate the boundary model and nonstationarity, we describe
how the implement the iterative VB approach in the spatial domain
in §5. Results and conclusions are given in §6 and §7.

2. PROBLEM FORMULATION

The BIR problem consists of estimating an unobserved true image,
f(i, j), and blur or point-spread function (PSF), h(i, j) from an ob-
served degraded image g(i, j), which is modelled as a discrete con-
volution f(i, j)∗h(i, j) plus additive white Gaussian noise (WGN),
w(i, j). In matrix-vector form this may be written as

g = H+f+ + w (1)

where H+f+ =
ˆ

H H0

˜ " f

f0

#
= Hf + H0f0. (2)

The extended observation model used here is shown in Fig. 1,
where the original image f+ is defined on a canvasR+ and is parti-
tioned into f , defined on the observation region R, and f0, defined
on the boundary regionR0. The pixels in f0 influence g through the
blurring operation, although g is only defined onR. The matrix H+

is partitioned accordingly. Note we may also write H+f+ = Fhh.

Two options are available for the restoration. Firstly, we may
estimate the extended image from p (f+ | g, · ), which corresponds
to extrapolation based on the available data. Secondly, we may
marginalise the boundary pixels f0, i.e. we estimate just f using
p (f | g, · ) ∝ R

f0
p (f+ | g, · ) df0. This accounts for the uncer-

tainty of f0, rather than assuming it is zero as most methods do. Both
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options are considered in [5], and although marginalisation is strictly
more favourable, the computational demands are much higher.

Therefore we simply estimate the extended image and discard
the border region, which gives satisfactory results in practice. This
simply requires using the extended H+ of size mn×m+n+. Based
on the WGN assumption, w ∼ N (0, σ2

wI), the likelihood of the
observations conditioned on the true image may then be written

p
`
g
˛̨
f+, h, σ2

w

´
= N `g ˛̨H+f+, σ2

wI
´
. (3)

2.1. Nonstationary Image Model and Blur Model

Nonstationary models have been shown to improve restorations of
the image, and aid in blur identification. Previously, a block-stationary
AR (BSAR) model has been used in [3] to represent the image. Here
we use a model that is a compromise between the more adaptable but
computationally complex BSAR model, and the simpler SAR model
in [2]; the image is partitioned into regions which each have their
own excitation variance, but the autoregressive (AR) model param-
eters are fixed (using the SAR model). A fixed segmentation of the
image is currently used, but we are working on tackling the BIR and
segmentation problems jointly using the Bayesian framework.

The AR model may be written as f+ = Af+ + v, where
v ∼ N (0, Qv) is the excitation signal representing local image ac-
tivity, Qv is a diagonal matrix parameterised by the excitation vari-
ances σv , and A is an AR coefficient matrix. Thus the image prior
probability density function (PDF) may be written as

p (f+ |a, σv ) = N (f+ |0,Σf ) , (4)

where Σf = E

h
f+fT

+

i
= (I −A)−1Qv(I −A)−T . (5)

With the SAR model, we denote C = I −A, and a first order
non-causal AR model with coefficients 0.25, representing the dis-
crete Laplacian, is used to define A. 1 With this notation we have

p (f+ |σv ) ∝ det |Qv|− 1
2 exp

ˆ−1

2
fT

+CT Q−1
v Cf+

˜
. (6)

Now we may segment the canvas R+ into R blocks or regions,
Rr ⊂ R+, of size Lr pixels, and denote the pixels bordering Rr

by Rrb, such that Rr+ = Rr ∪ Rrb (see Fig. 1(b)). For a given
region Rr , the image values inside it are denoted fr , while those at
its exterior border as frb (these pixels are inRr+ but notRr).

The excitation signal in Rr may then be written vr = Crfr +
Crbfrb = Cr+fr+ , with appropriately defined matrices Cr , Crb,

and Cr+ extracted from C . If the variance of each block is σ2
vr

, then

σv = [σ2
v1 · · ·σ2

vR
]T and Qv = diag([σ2

v11
T
L1 · · ·σ2

vR
1T

LR
]T ); 1L

is a vector of L ones. Now we may write

p (f+ |σv ) ∝
RY

r=1

σ−Lr
vr

exp
ˆ−1

2
σ−2

vr
vT

r vr

˜
(7)

Note that the while the excitation signal v is independent in each
region, the image in each region depends on its neighbours.

The blur model is similar to the image prior, but with a station-
ary covariance described by the discrete Laplacian operator Ch, i.e.
p (h | δh ) = N `h ˛̨ 0, δh(CT

h Ch)−1
´
, where δh controls the im-

portance placed on the prior (see [2]).

1It should also be noted that the full Laplacian matrix C should be modi-

fied at the boundaries, when used in the spatial domain, to avoid the assump-

tion that the image outside the extended m+ × n+ region is zero [5]. This

further reduces boundary artefacts.
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Fig. 2. Graphical model showing relationships between variables

2.2. Hyperprior Models

To remove dependance on exact specification of the prior models,
whose hyperparameters are in practice unknown, the hyperpriors
may be specified. A standard way to do this, resulting in more
tractable solutions, is to use conjugate priors. For the hyperparame-
ters, which are all variances of Gaussian distributions, the standard
conjugate priors are inverse Gamma distributions; thus we have:

p (δh) = IG (δh |αh, βh ) (8)

p (σv) =

RY
r=1

IG `σ2
vr
|αvr , βvr

´
(9)

p
`
σ2

w

´
= IG `σ2

w |αw, βw

´
(10)

where the inverse gamma distribution, defined for positive σ2 is

IG `σ2 |α, β
´

=
βα

Γ(α)
σ−2(α+1)e

− β

σ2 , (11)

with E
ˆ
σ2˜ =

β

α− 1
, Var

ˆ
σ2˜ =

β2

(α− 1)2(α− 2)
(12)

3. VARIATIONAL BAYESIAN INFERENCE

The complete model is shown using the directed acyclic graph (DAG),
or Bayesian network, in Fig. 2. We denote the full set of unknowns
as Θ = {f+, σv, h, δh, σ2

w}, and Θ\θ this set omitting variable θ.

We wish to perform inference using the posterior distribution,
p (Θ | g ) ∝ p (g |Θ ) p (Θ). However for the model presented there
is no analytic solution to maximise this distribution. Following the
approach in [2], we derive a separable analytic approximation of the
posterior as

p (Θ | g ) ≈ q (Θ) =
Y
θ∈Θ

q (θ) . (13)

An iterative scheme is then used to estimate the optimum distribu-
tions for each variable θ.

We aim to make the approximation as good as possible by min-
imising the Kullback-Leibler (KL) divergence between the distribu-
tions:

CKL

`
q (Θ) ‖ p (Θ | g )

´
=

Z
Θ

q (Θ) log

„
q (Θ)

p (Θ | g )

«
dΘ (14)

=

Z
Θ\θ

q
`
Θ\θ

´ Z
θ

q (θ) log

 
q
`
Θ\θ

´
q (θ)

p (g |Θ ) p (Θ)

!
dθdΘ\θ + const.
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=

independent of q (θ)z }| {Z
Θ\θ

q
`
Θ\θ

´
log q

`
Θ\θ

´
dΘ\θ

=1z }| {Z
θ

q (θ) dθ + const.

+

Z
Θ\θ

q
`
Θ\θ

´ Z
θ

q (θ) log

„
q (θ)

p (g |Θ ) p (Θ)

«
dθdΘ\θ

(15)

This rearrangement is due to the separable approximation. To obtain
the optimal distribution q̂ (Θ), we find for each θ:

q̂ (θ) = argmin
q(θ)

CKL

`
q (Θ) ‖ p (Θ | g )

´
(16)

= argmin
q(θ)

E

»Z
θ

q (θ) log

„
q (θ)

p (g |Θ ) p (Θ)

«
dθ

–
q(Θ\θ)

(17)

where any terms independent of q (θ) may be treated as constants.
Differentiating the argument with respect to q (θ) gives

log q̂ (θ) = const. + E
ˆ
log
`

p (g |Θ ) p (Θ)
´˜

q(Θ\θ) (18)

The constant appears under the constraint
R

q̂ (θ) dθ = 1.

4. DISTRIBUTION APPROXIMATIONS

Given the approximation in (13), the distributions may be calculated
using (18). For the distribution q̂ (σv), using (18) (again ignoring
terms independent of σv), we find:

log q̂ (σv) ∝ E
ˆ
log
`

p (f |σv ) p (σv)
´˜

q(Θ\σv ) (19)

∝ log(p (σv))− 1

2

RX
r=1

Lr log(σ2
vr

) + E

h
σ−2

vr
vT

r vr

i
q(f+)

(20)

⇒ q̂ (σv) =

RY
r=1

IG
„

σ2
vr

˛̨̨
˛αvr +

Lr

2
, βvr +

1

2
E

h
vT

r vr

i
q(f+)

«
(21)

This is in the form of a product of independent inverse Gamma dis-
tributions, over the variance of each region.

We may then use the iterative VB (IVB) approach to estimate the
optimal distributions from the data; at each iteration, k, we denote
these by qk (θ). This amounts to updating each qk (θ) in turn, using
the expectations of the other previously found q distributions.

Intuitively, all we need to update each qk (θ) are its moments;
since the the first two moments completely characterise the Gaussian
and inverse Gamma distributions we are concerned with, these are all
we need calculate to update the other distributions. We use E

k [θ] to
denote the expectation of θ with respect to the distribution qk (θ),
and covk [θ] the covariance of θ at iteration k.

Observe that qk
`
σ2

vr

´
in (21) is in the form IG (θ |α, β ) =

IG (θ |αθ + x, βθ + y ); αθ and βθ come from the prior, whose

mean βθ
αθ−1

we will now denote by E
0 [θ]. Then to find E

k
ˆ
σ2

vr

˜
,

we apply the following identity for an inverse-Gamma distribution:

E [θ] =
β

α− 1
=

βθ + y

αθ + x− 1
(22)

=

„
αθ − 1

αθ + x− 1

«
| {z }

γθ

„
βθ

αθ − 1

«
| {z }

E0[θ]

+

„
x

αθ + x− 1

«
| {z }

1−γθ

“ y

x

”
(23)

which is a combination of the prior mean and the term y
x

weighted

by a confidence parameter, γθ , which takes values between zero and
one. Thus we may supply E

0 [θ] and γθ in place of αθ and βθ .
The expectation in y must be evaluated; in the case of qk+1

`
σ2

vr

´
:

E

h
vT

r vr

i
qk(f+)

= E
ˆ‖Cr+fr+‖2

˜
qk(fr+) (24)

= E
k [vr]

T
E

k [vr] + tr
h
CT

r+Cr+ covk ˆfr+

˜i
(25)

E
k [vr] is found simply by extracting the relevant pixels from E

k [v] =
CE

k [f+]. Note that (25) is derived using the identities xT x =

tr
ˆ
xxT

˜
and E

ˆ
xxT

˜
= E [x] E [x]T + cov [x].

The distributions and moments for the variables f+, h, δh, σ2
w

are found in a similar manner using (18); the derivations are as for
the corresponding variables in [2]: q̂ (f+) and q̂ (h) are Gaussian,
and q̂ (δh) and q̂

`
σ2

w

´
are inverse Gamma distributions. Their use

in the IVB procedure is described in Algorithm 1.

Algorithm 1 Iterative VB for Nonstationary BIR

Require: g, E0 [δh] , E0
ˆ
σ2

w

˜
, E0

ˆ
σ2

vr

˜
, γδh , γσ2

w
, γσ2

vr
, ρ0

1: E
0 [f+] ⇐ [gT , ḡ1]T {Where ḡ is the mean of g },

E
0 [h] ⇐ GaussianPSF(ρ0) , k ⇐ 1

2: while
`‖Ek [f ]‖2 − ‖Ek−1 [f ]‖2´ < ε‖Ek−1 [f ]‖2 do

3: E
k [δh] ⇐ γδhE

0 [δh] +
(1−γδh

)

mhnh
E
ˆ‖Ch‖2˜qk−1(h)

4: E
k
ˆ
σ2

w

˜⇐ γσ2
w

E
0
ˆ
σ2

w

˜
+ (1− γσ2

w
) 1

mn
E
ˆ‖g −H+f+‖2

˜
qk−1(h)qk−1(f+)

5: E
k
ˆ
σ2

vr

˜⇐ γσ2
vr

E
0
ˆ
σ2

vr

˜
+ (1− γσ2

vr
) 1

Lr
E
ˆ‖Cr+fr+‖2

˜
qk−1(f+) , ∀r

6:
`
covk [f+]

´−1 ⇐ CT
E

k [Qv]−1 C + E
k
ˆ
σ2

w

˜−1 ·
·
“

E
k−1 [H+]T E

k−1 [H+] + covk−1
ˆ
HT

+

˜”
7: E

k [f+] ⇐ E
k
ˆ
σ2

w

˜−1
covk [f+] Ek−1 [H+]T g

8:
`
covk [h]

´−1 ⇐ E
k [δh]−1 CT

h Ch

+ E
k
ˆ
σ2

w

˜−1
“

E
k [Fh]T E

k [Fh] + covk
ˆ
F T

h

˜”
9: E

k [h] ⇐ E
k
ˆ
σ2

w

˜−1
covk [h] Ek [Fh]T g

10: k ⇐ k + 1
11: end while

5. SPATIAL DOMAIN IMPLEMENTATION

In practice, to implement in the spatial domain, the matrices covk [h]
and covk [f+] may be too large to invert. We have chosen to approx-
imate the distributions q (f+) and q (h) as degenerate, i.e. point
estimates, and hence these terms, and the terms covk

ˆ
F T

h

˜
and

covk
ˆ
HT

+

˜
which depend on them, are ignored in Algorithm 1. This

enables us to use the conjugate gradients least sqaures (CGLS) algo-
rithm [5] to efficiently solve the required linear equations for f+ and
h. The downside with this approximation is that the hyperparameter
estimation may be less reliable at low SNRs.

CGLS solves a least squares system

M T Mx = M T y (26)

via an iterative procedure in which it is not required to calculate
the product M T M . In order to solve for x = E

k [f+] using this

procedure, let Q−1
v = LT L, M =

"
H+

LC

#
, and y =

"
g

0

#
.

The solution for E
k [h] is found similarly.
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(a) f+ (b) g

(c) (d)

Fig. 3. (a) Original image, with extended canvas shown; (b) Blurred

observation from the extended model; (c) Restoration using the pro-

posed method (d) Restoration using the method in [2]

6. EXPERIMENTAL RESULTS

The proposed spatial domain restoration procedure has been tested
and compared with the stationary solution found using the FFT, used
in [2]. The Lena image shown in Fig. 3(a) is used for the original
image, with the highlighted central region forming the observation
region. This is blurred with a Gaussian PSF of variance ρ = 9
pixels, and WGN with σ2

w = 0.57 added, giving the signal-to-noise
ratio (SNR) of the blurred image, shown in Fig. 3(b), as 40dB.

For the restoration using the method in [2], the central portion,
f , of Fig. 3(a) is convolved with h using periodic boundary condi-
tions, to give an observation g consistent with the deblurring model
(note that the FFT based algorithm is unable to work with a realisti-
cally blurred image due to the boundary effects).

In the proposed method, 10 CGLS iterations are performed at
each VB iteration k, using E

k−1 [f+] and E
k−1 [h] for the initial

guess in each case. It was found experimentally that both better
numerical stability and speed are obtained if this is reduced to just
5 CGLS iterations per VB iteration, after the initial settling period
where the noise variance σ2

w is estimated (this converges to a steady
value after about 30 iterations).

The restored images found using each method after 384 itera-
tions (using the termination threshold ε = 10−4) are shown in Fig.
3(c) for the proposed method and Fig. 3(d) for the method in [2]. The
same initial conditions for the hyperparameters are used: E

0 [δh] =
10−8; E0

ˆ
σ2

w

˜
= 0.5; E0

ˆ
σ2

vr

˜
= 50, r ∈ R; E0

ˆ
σ2

vr

˜
= 5, r ∈

R0; γδh = 0.5; γσ2
w

= 0.5; γσ2
vr

= 0.7; ρ0 = 1.0. The proposed

method used a fixed segmentation of regular 4× 4 pixel blocks.
The ISNR defined as 10 log10

`‖f − g‖2/‖f − E
k [f ]‖2´ is

found for the proposed method as 2.469dB and 1.934dB for the
method in [2]. To make this evaluation fair and ignore the different
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Fig. 4. (a) Local image variances σ2
vr

; (b) Unstable restoration

boundary effects, the norms were calculated across a region slightly
inset from the borders of f .

The estimated parameters are found as E [δh] = 5.5036×10−9,
E
ˆ
σ2

w

˜
= 0.3975, E

ˆ
σ2

v

˜
= 35.965 for the method in [2], and

E [δh] = 5.6039×10−9, E
ˆ
σ2

w

˜
= 0.3983 for the proposed method.

The values for E
ˆ
σ2

vr

˜
were in the range 33.703 − 50.681 and are

shown in Fig. 4(a).
As a further experiment, we observe that if the size of each re-

gion is reduced to one pixel, we obtain the image model proposed
in [4]. A restoration using the same parameters above is shown in
Fig. 4(b), the result is after 415 iterations. The ISNR is 2.3948dB.
An interesting phenomena is observed: some of the variances σ2

vr

experience positive feedback as the iterations progress. When larger
regions are used, this effect is mitigated. This suggests investigating
other nonstationary models to gain better insight into the problem.

7. CONCLUSIONS

The VB approach for blind deconvolution has been extended to a
spatial domain model which includes realistic modelling of bound-
ary effects. This spatial domain model allows for nonstationary
restorations to be performed, although the exact choice of model
should be investigated further to obtain the best results.

8. REFERENCES

[1] T. E. Bishop, S. D. Babacan, B. Amizic, T. Chan, R. Molina,
and A. K. Katsaggelos, “Blind image deconvolution: problem
formulation and existing approaches,” in Blind image deconvo-
lution: Theory and Applications, P. Campisi and K. Egiazarian,
Eds. CRC, 2007.

[2] R. Molina, J. Mateos, and A.K. Katsaggelos, “Blind deconvolu-
tion using a variational approach to parameter, image, and blur
estimation,” IEEE Trans Image Process, vol. 15, no. 12, pp.
3715–3727, 2006.

[3] T. E. Bishop and J. R. Hopgood, “Blind image restoration us-
ing a block-stationary signal model,” in Proceedings 2006 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing., May 2006, vol. 2, pp. II–853–II–856.

[4] G. Chantas, N. P. Galatsanos, and A. Likas, “Non stationary
bayesian image restoration,” in Proceedings - International
Conference on Pattern Recognition, Cambridge, United King-
dom, 2004, vol. 4, pp. 689 – 692.

[5] D. Calvetti and E. Somersalo, “Statistical elimination of bound-
ary artefacts in image deblurring,” Inverse Probl, vol. 21, no. 5,
pp. 1697–1714, 2005.

I - 128


