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ABSTRACT 

 
In this paper, we propose a new algorithm called 
Orthogonal Neighborhood Preserving Embedding (ONPE) 
for face recognition. ONPE can preserve local geometry 
information and is based on the local linearity assumption 
that each data point and its k nearest neighbors lie on a 
linear manifold locally embedded in the image space. ONPE 
is based on Neighborhood Preserving Embedding (NPE), 
but overcomes the metric distortion problem of NPE, while 
metric distortion usually leads to performance degradation. 
Besides, we propose a classification method (ONPC) based 
on the ONPE, which use local label propagation method in 
the reduced space for face recognition. ONPC is based on 
the natural assumption that the local neighborhood 
information is also preserved in reduced space, and the 
label of a data point can be obtained in the reduced space 
by the labels of its neighbors. Experimental results on two 
face databases demonstrate the effectiveness of our 
proposed method. 
 
Index Terms—Face Recognition, Manifold Learning, 
Eigenface, Neighborhood preserving embedding 
 

1. INTRODUCTION 
 
Face recognition is one of the most challenging problems in 
computer vision and pattern recognition. Numerous methods 
have been proposed for face recognition over the past few 
decades. Among these methods, Principal Component 
Analysis (PCA) [1] and Linear Discriminant Analysis (LDA) 
[2] are the most popular techniques, which assume that the 
samples lie on a linearly embedded manifold. However, a 
lot of research has shown that facial images possibly lie on a 
nonlinear submanifold [3, 4]. When using PCA and LDA 
for dimensionality reduction, they will fail to discover the 
intrinsic dimension of the image space. Recently, a number 
of manifold learning methods are proposed to discover the 
nonlinear structure of the manifold by investigating the local 
geometry of the samples, such as LLE [3], Isomap [4],  
LTSA [5, 6].

Neighborhood Preserving Embedding (NPE) [7] is a 

recently proposed linear dimensionality reduction algorithm. 
NPE aims to preserving the local manifold structure, unlike 
PCA, which aims to preserving the global Euclidean 
structure. However, different from PCA, NPE is 
non-orthogonal. Therefore, it can not preserve the metric 
structure of the high-dimensional space and suffers from the 
problem of dimensionality estimation [10].

In this paper, we propose a new algorithm called 
Orthogonal Neighborhood Preserving Embedding. 
Orthogonal NPE is fundamentally based on NPE. It shares 
the same neighborhood preserving character as NPE, but at 
the same time it requires the basis functions to be orthogonal. 
Orthogonal basis functions preserve the metric structure of 
the original high dimensional space. Moreover, with the 
ONPE projection, we proposed to utilize a LNP (Local 
Neighborhood labels Propagation) method [8] for 
classification (ONPC) on the reduced space, naturally 
extends the assumption of LNP. ONPC is based on the 
reasonable assumption that local neighborhood information 
is preserved in the reduced space and the label information 
of a point can be obtained from neighbor points. Note that 
original LNP is applied in original high-dimensional space, 
and is inefficient for large data set. The original NPE utilize 
KNN (K-nearest neighbors) for classification, and is not 
optimal due to its ignoring of the local geometry 
information. 

The rest of the paper is organized as follows: the 
Orthogonal Neighborhood Preserving Embedding (ONPE) 
algorithm and the classification extension (ONPC) are 
described in Section 2. Experimental results on face datasets 
are shown in Section 3. Finally, conclusions are summarized 
in Section 4. 
 
2. ORTHOGONAL NEIGHBORHOOD PRESERVING 

EMBEDDING 
 

2.1. ONPE algorithm 
 
First of all, we would like to point out the non-orthogonality 
property of NPE. Recall that in NPE [7], the basis vectors of 
NPE is the first  eigenvectors associated with the 
smallest eigenvalues of the eigen-problem 
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The basis vectors satisfy the following constraints: 
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The transformation of NPE is non-orthogonal. Actually, it is 
 orthogonal. TXX

The algorithm procedure of ONPE is stated below: 
In face recognition, usually the number of feature 

dimensions (D) is much larger than the number of samples 
(n). Then, the  matrix  is singular. To 
overcome this problem, we can apply PCA to project the x

D D TXX
i 

into a subspace without losing information and the matrix 
 becomes non-singular. TXX

Preprocess-PCA projection (Optional): Project the data 
point ix  into the PCA subspace by throwing away the 
components corresponding to zero eigenvalues. Denote the 
transform matrix of PCA by PCAA . For the simple of 
explanation, we will use ix  to denote the data after PCA 
projection also. If the preprocess is not applied, let PCAA  
denotes the identity matrix. 

1. Constructing an adjacency graph: Let G denote a 
graph with n nodes. The i-th node corresponds to the data 
point xi. There are two ways to construct the adjacency 
graph: k nearest neighbors or  neighborhood [3, 7]. In the 
following explanation, we assume the k nearest neighbors 
construction method is applied. 

2. Computing the weights: The basic assumption is that 
each data point along with its k nearest neighbors 
(approximately) lies on a locally linear manifold, and each 
data point xi is reconstructed by a linear combination of its k 
nearest neighbors. Let  denote the weight matrix 
with  having the weight of the edge from node i to node 
j, and 0 if there is no such edge. The weights on the edges 
are computed by minimizing the following reconstruction 
error function 

n nW R
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with constraints 
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Obviously, the more similar xj to xi, the larger  will be. 
To resolve it for a point x

ijW

i, we can define the local Gram 
matrix 
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the local Gram matrix containing the pairwise inner 
products among the neighbors of xi, given that the neighbors 
are centered with respect to xi. It can be easily proved that 
the constrained least squares problem has the following 
closed-form solution [9]  
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where wi represents the i-th column of W. 
3. Computing the Orthogonal Neighborhood Preserving 

Embeddings: Define Let  be the orthogonal 
neighborhood preserving embeddings, we define: 

1 2{ , , , }k

( 1)
1[ , , ]k

kA 1
k( 1) ( 1) 1 ( 1)[ ] ( )k k T TS A XX A

The orthogonal neighborhood preserving vectors 
 can be iteratively computed as follows: 1 2{ , , , }k

1) Compute  as the eigenvector of  
associated with the smallest eigenvalues, where 

1
1( )T TXX XMX

( ) ( )TM I W I W . 
2) Compute  as the eigenvector of k

( ) 1 ( 1) ( 1) 1 ( 1) 1{ ( ) [ ] [ ] } ( )k T k k k T T TJ I XX A S A XX XMX

associated with the smallest eigenvalues of ( )kJ . 
4. ONPE projection: Let , the 

embedding is as follows: 
1[ , , ]ONPE dA

Tx y A x

PCA ONPEA A A
where y is a d-dimensional representation of x. A is the 
transform matrix. 

Note, due to space limits, the theory justification is 
omitted here, which is similar to [10]. 
 
2.2. Orthogonal Neighborhood Preserving Classification 
 
In [11], a local manifold matching method was proposed for 
face recognition. In [8], Want et al. proposed a 
semi-supervised classification method based on Linear 
Neighborhood label Propagation (LNP), and utilizes the 
local geometry information, but it operate in the original 
high-dimensional space. So as noted by the author, it is 
inefficient for very high-dimensional data set. 

We follow the way of LNP, but with a further natural 
assumption that the local neighborhood relationship in 
low-dimensional space is preserved as in original 
high-dimensional space. Note that this is the aim of NPE 
projection algorithm, and we operate in the reduced space 
by apply ONPE first. That is, we classify data points on the 
reduced space after ONPE projection TY A X , 

. Suppose there are c classes and the 
label set becomes

, 1, ,T
i iy A x i n

{1,2, , }L c . Let M  be a set of n c  
matrices with non-negative real-value entries. Any matrix 

 corresponds to a specific 
classification on  which labels  as 

1 2[ , , , ]T T T T
nF F F F M

c ijF
Y iy

arg maxi jz . Initially, we set 0F Z , where 
1ijZ ( 1 j c ) if  is labeled as j, and iy 0ijZ  

otherwise, and for unlabeled points, 0ujZ . The main 
classification procedure is list in table 1 (For details please 
refer to [8]). 
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TABLE 1 ONPC ALGORITHM 

Input: 1 2 1{ , , , , , , } D
l l nX x x x x x , 1{ }l

i ix  are 
labeled,  are unlabeled. The initial label matrix 1{ }n

u u lx
Z . The number of nearest neighbors k. The reduced 
dimension d. The constant , defaults to 0.99. 

Output: The labels of all the data points. 
1. Dimension reduction by ONPE: , note that here 
we also obtain the weight matrix  during ONPE. 

TY A X
W

2. Construct the propagation matrix , and iterate P W
1 (1 )t tF PF Z  until convergence. 

3. Let  be the limit of the sequence *F tF . Output the 
labels of each data point ix ( ) by iy *arg maxi j c ijz F . 
 

3. EXPERIMENT RESULTS 
 

In this Section, we investigate the use of ONPE on face 
analysis and recognition, and compare ONPE with 
Eigenface (PCA based), Fisherface (LDA based) and NPE. 
Eigenface and Fisherface are two of the most popular linear 
techniques for appearance-based face recognition. 

The proposed method has been tested on ATT ORL 
database and Yale database. In ORL database, there are ten 
different grey images for each of 40 distinct subjects. For 
some subjects, the images were taken at different times, 
varying the lighting, facial expressions (open/closed eyes, 
smiling/not smiling) and facial details (glasses/no glasses). 
The size of each image is  pixels with 256 grey 
levels per pixel. 10 sample images of one individual are 
displayed in Fig. 1. The Yale database was constructed at 
the Yale Center for Computational Vision and Control. It 
contains 165 gray scale images of 15 individuals. The 
images demonstrate variations in lighting condition, facial 
expression (normal, happy, sad, sleepy, surprised, and 
wink). 

92 112

The first experiment for recognition is tested on the 
ORL database. For comparison with NPE, the same 
preprocessing as in [7] is applied, and we use the 
preprocessed data which is available on the web 

(http://www.ews.uiuc.edu/dengcai2/Data/data.html). The 
size of each preprocessed image in the experiments is 
32 32  pixels, with 256 grey levels per pixel. Thus, each 
image can be represented as a 1024-dimensional vector in 
image space. As in [7] , the nearest-neighbor method using 
Euclidean metric was employed for recognition on 
Eigenface, Fisherface and NPE, while for ONPE, the label 
propagation method (ONPC) is applied. 

We have discussed how to learn an orthogonal 
neighborhood preserving subspace. The images of faces in 
the training set are used to learn such a face subspace. The 
subspace is spanned by the basis vectors. Therefore, any 
image in the face subspace can be represented as a linear 
combination of the basis vectors. We can display the basis 
vectors as a sort of feature images. Using the Yale face 
database as the training set, we present the first 5 basis 
vectors in Fig. 2, together with Eigenfaces and Fisherfaces, 
NPEfaces and ONPEfaces presentation. It is very interesting 
to see that the NPE and ONPE faces are similar to 
Fisherfaces. 

For each individual, l(=3,4,5) images are randomly 
selected for training and the rest are used for testing. For 
each given l, the results are averaged over 10 random splits. 
In general, the recognition rates vary with the dimension of 
the face subspace. Fig 3 shows the plot of recognition 
accuracy versus dimensionality d reduction for Eigenface, 
Fisherface, NPE and ONPE on ORL database (for l=3,4). 
The best result obtained in the optimal subspace and the 
corresponding dimensionalities for each method on ORL 
database are shown in Table 2. Note that, the upper bound 
of the dimensionality of reduced space is n-1, c-1, n and n 
for PCA, LDA, NPE and ONPE, respectively. 
 

TABLE 2 PERFORMANCE COMPARISONS ON ORL 

Method 3 Train 4 Train 5 Train 
Eigenfaces 81.3%(106) 81.3%(118) 86.2%(58) 
Fisherfaces 86.7%(38) 92.4%(39) 92.5%(39) 
NPEfaces 87.2%(62) 93.1%(76) 94.3%(58) 
ONPEfaces 91.7%(42) 95.2%(34) 97.8%(44) 

 

Fig. 1. Sample face images from the ORL database. There 
are 10 face images for each subject with different facial 
expression. 

(a) 
 

(b) 
 

(c) 
 

(d) 
 

Fig. 2. The first 5 basic vectors on Yale face database. (a) 
Eigenfaces, (b) Fisherfaces, (c) NPEfaces, (d) ONPEfaces. 
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As can be seen, our ONPE algorithm almost 
outperforms the other methods across all the values of 
dimension. Although LDA perform well when the value of d 
is small, their performance impairs as the dimension d 
increases. From Table 2, we can see that the dimension d of 
ONPE corresponding to the top recognition rate is low and 
the performance of ONPE improves significantly as the 
number of l of training samples per individual increases. 
The Fisherface method performed comparatively to ONPE 
as the size of the training set increases. Moreover, the 
optimal dimensionality obtained by NPE and ONPE and 
Fisherface is much lower than that obtained by Eigenface. It 
is also observed that ONPE can achieve similar recognition 
accuracy with much smaller dimension compared with NPE. 
Note that in NPE recognition, the KNN method is used, 
while in our OPNE, the classification method is based on 
our proposed method which takes into account the local 
neighborhood information. 

Similar experiments are also applied to the Yale face 
database. The similar preprocessing is applied on the Yale 
database. Similar to the experiment on ORL database, a 
random subset with l(=3,4) images per individual was taken 
with labels to form the training set. The rest of the database 
was considered to be the testing set. For each given l, we 
average the results over 10 random splits. The experimental 
protocol is the same as before. The recognition results are 
shown in Fig 4. Our ONPE method almost outperformed all 
the other methods. 

One shortcoming of our method is that it needs more 
time to calculate the basic images for its iterative way. It 
needs further improvement for real time applications. 

 
4. CONCLUSION 
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We have proposed a new algorithm for manifold learning 
called Orthogonal Neighborhood Preserving Embedding 
(ONPE). The new algorithm combines the orthogonal 
advantage of PCA transform and Neighborhood Preserving 
Embedding. Orthogonal NPE can have the neighborhood 
preserving power as NPE, while it does not suffer from the 
problem of metric distortion. Besides, we proposed a 
classification method (ONPC) for ONPE based on local 
label propagation with a natural assumption which utilizes 
the local geometry information. Experiments on face 
recognition demonstrated the effectiveness of the proposed 
method. 
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(b) 4 Train 
Fig. 3. Recognition rate vs dimension of reduced space on 
ORL. 
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(b) 4 Train 
Fig. 4. Recognition rate vs dimension of reduced space on 
Yale. 
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