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ABSTRACT

In this paper, we propose a novel method of illumination esti-

mation /normalization based on adaptive smoothing, which is

to be applied to robust face recognition. In order to estimate

the illumination in the framework of retinex theory, adaptive

smoothing is applied based on both iterative convolution and

two discontinuity measures. In addition to that, we also in-

troduce a couple of new concepts, which are designed to be

suitable especially for face images. One is the new conduction

function for adaptive weighting, and the other is the smooth-

ing constraint for more accurate description of real environ-

ments. The evaluations, which are conducted based on the

Yale face database B, show that the proposed method achieves

high recognition rates even in more challenging environments

such as the case of using images with the worst case of illu-

mination as a training set.

Index Terms— Adaptive smoothing, Illumination Esti-

mation, Illumination Normalization, Retinex

1. INTRODUCTION

Illumination normalization is a major requirement in the face

recognition process. In recent years, several methods which

are based on retinex theory have been proposed because they

have common advantages that they only require one training

image and has relatively low computational complexity[1][2].

The retinex theory is based on the physical imaging model,

in which an image I(x, y) is regarded as the product of the

reflectance R(x, y) and the illumination L(x, y) at each pixel

(x, y)[1]. Therefore, the illumination normalization can be

achieved by estimating the illumination L and then dividing

the input image I by it. However, it is impossible to estimate

L from I , unless something else is known about either L or

R. Hence, various assumptions and simplifications about L,

or R, or both are proposed to solve this problem[1]. A com-

mon assumption is that edges in the scene are edges in the re-

flectance, while illumination spatially changes slowly in the

scene. Thus, in most retinex based algorithms, L is estimated

as the smooth version of I . Single Scale Retinex (SSR), the

latest version of Land’s retinex, employed a simple Gaussian

filter to estimate L[3]. However, strong cast shadows violate

the assumption of slowly varying illumination, and halo ef-

fects are often visible at large illumination discontinuities in

I . To solve this problem, Jobson et al. reduced the halo ef-

fects by combining several low-pass filtered copies for the es-

timation of L[4]. Discontinuity preserving filter is also one of

the most efficient methods that can estimate L. For example,

self-quotient image(SQI) improved performance for illumi-

nation problem using weighed Gaussian filter[2]. However,

these methods still cannot completely remove large illumina-

tion discontinuities and ultimately cannot avoid a decrease of

the recognition rate. Therefore, more efficient discontinuity

preserving filter must be employed to estimate L.

In this paper, we propose a new method to estimate and

normalize illumination applying recently developed concepts

of discontinuity preserving filters in the framework of retinex

based method. Our method is mainly based on adaptive smooth-

ing using iterative convolution employing the idea that com-

bines two discontinuity measures[5][6]. For estimation of il-

lumination especially suitable to face recognition, we intro-

duce two new useful concepts. First, we propose a new form

of conduction function that is used to determine a disconti-

nuity level in each pixel (x, y). Then, we apply additional

constraint for more accurate description of real environments.

The paper is organized as follows. In section 2, the pro-

posed method is described in detail. In section 3, the experi-

mental results are presented. Finally a conclusion is made in

section 4.

2. ILLUMINATION
ESTIMATION/NORMALIZATION

BASED ON ADAPTIVE SMOOTHING

The key idea of adaptive smoothing is to iteratively convolve

the input image to be smoothed with a 3 × 3 averaging mask

whose coefficients reflect, at each point, the discontinuity level

of the input image. As verified in [6], this adaptive smoothing

process is the approximation of anisotropic diffusion. Gen-

eral framework of adaptive smoothing can be formulated as

follows. Since we estimate illumination L as smoothed ver-

sion of input image I , the initial value of the estimated illumi-

nation, i.e. L(0)(x, y), must be the same as I(x, y). Then, the

estimated illumination L(t+1)(x, y) at the (t + 1)th iteration
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is given by:

L(t+1)(x, y) =
1

N (t)

1∑
i=−1

1∑
j=−1

L(t)(x+i, y+j)w(t)(x+i, y+j)

(1)

with

N (t) =
1∑

i=−1

1∑
j=−1

w(t)(x + i, y + j) (2)

where

w(t)(x, y) = g(d(t)(x, y)) (3)

N (t) in (2) represents a normalizing factor. A conduction

function g is a nonnegative monotonically decreasing func-

tion such that g(0) = 1 and g(d(t)(x, y)) → 0 as d(t)(x, y) in-

creases, where d(t)(x, y) represents the amount of discontinu-

ity at each pixel (x, y). For more efficient setting of w(t)(x, y),
unlike in (3), we employ the idea that combines two disconti-

nuity measures[5].

2.1. Discontinuity Measures

To determine the level of discontinuity at each pixel (x, y),
two measurements of discontinuities are used[5]: spatial gra-

dient and local inhomogeneity.

2.1.1. Spatial Gradient

Spatial gradient is a common local discontinuity measure in

image processing. The spatial gradient of an image I(x, y)
at pixel (x, y) is defined as the first partial derivatives of its

image intensity function with respect to x and y:

∇I(x, y) = [Gx, Gy] = [
∂I(x, y)

∂x
,
∂I(x, y)

∂y
] (4)

where the derivatives are approximated by

Gx = I(x + 1, y) − I(x − 1, y) (5)

Gy = I(x, y + 1) − I(x, y − 1) (6)

The magnitude of the gradient vector in (4), on the other hand,

is given by

|∇I(x, y)| =
√

G2
x + G2

y (7)

2.1.2. Local Inhomogeneity

In addition to spatial gradient, Chen proposed to use inhomo-

geneity as another measure of discontinuity[5]. Although this

measure is very efficient, it is very time consuming. There-

fore, we propose simpler measure for real time application.

Another measure that we propose is just the average of lo-

cal intensity differences for each pixel (x,y) in the face im-

age. We call this measure local inhomogeneity. This mea-

sure provides the degree of uniformity for all the pixels in the

(a) (b)

Fig. 1. (a)Flow magnitude functions by (15). (b)Flow magni-

tude functions by (14).

small neighborhood of current pixel. If local inhomogene-

ity at pixel(x, y) is large, we can expect discontinuity occurs

at pixel(x, y). The average of local intensity differences at

pixel(x, y) is

τ(x, y) =

∑∑
(m,n)∈Ω |I(x, y) − I(m,n)|

|Ω| (8)

where Ω is a convolution region, and (m,n) indicates the lo-

cations of the neighboring pixels. Then, the average τ(x, y)
at each pixel(x, y) is normalized by

τ̂(x, y) =
τ(x, y) − τmin

τmax − τmin
(9)

where τmax and τmin respectively are the maximal and min-

imal values of τ across the entire face image. To emphasize

higher values that more likely correspond to cast shadow, we

also adopt a nonlinear transformation as follows.

τ̃(x, y) = sin(
π

2
τ̂(x, y)), 0 ≤ τ̃(x, y) ≤ 1 (10)

Although this measure is calculated based only on its nearest

neighborhood, we can expect the propagation effect of local

inhomogeneity incurred by iterative convolution.

2.2. Conduction Function and Smoothing Constraint

To utilize two discontinuity measures described in the pre-

vious section, the proper conduction function g must be de-

fined. As mentioned, g is nonnegative monotonically decreas-

ing function because a large weight should be assigned to a

pixel that involves low discontinuity, and vice versa for dis-

continuity preserving. We apply nonnegative monotonically

decreasing function g to both spatial gradient and local inho-

mogeneity as follows.

α(x, y) = g(τ̃(x, y), h) (11)

β(x, y) = g(|∇I(x, y)|, S) (12)

Here, h(0 < h < 1) and S(S > 0) are used to determine level

of discontinuities which must be preserved. Among possible

selections of g, most works[5][6] proposed to use two forms,

given below in (13) and (14).
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Fig. 2. Proposed illumination estimation/normalization

g(z, K) = exp(− z2

2K2
) (13)

g(z,K) =
1

1 + ( z
K )2

(14)

These two functions cause two different operations in adap-

tive smoothing as iteration proceeds: one is the smoothing

within homogeneous regions, and the other is the sharpening

of strong discontinuities(e.g. edges) that will be preserved.

However, edge sharpening operation is not proper to our ob-

jective although this is very efficient in the view of feature ex-

traction(e.g. edge detection). Because edge sharpening oper-

ation makes boundary of cast shadow more sharp, the bound-

ary between shadow region and non-shadow region may be

more visible after normalization. Therefore, we propose a

new form of g without edge sharpening effect.

g(z, K) =
1

1 +
√

z
K

(15)

In order to see that this function does not have the edge sharp-

ening effect, let us recall that the adaptive smoothing is the

approximation of the anisotropic diffusion and consider only

1-D case without loss of generality. Then, smoothing process

can be formulated as follows.

dI(x, t)
dt

=
d

dx
(φ(Ix(x, t)) (16)

with

φ(Ix(x, t)) = g(Ix(x, t),K)Ix(x, t) (17)

Perona and Malik described qualitatively the shape of the

flow magnitude function φ that causes edge sharpening[7].

As shown in figure 1, the flow magnitude function with the

existing conduction function((14)) has finite optimum that φ
is monotonically increasing for |Ix| < K while it is mono-

tonically decreasing for |Ix| > K. However, the flow mag-

nitude function with proposed conduction function((15)) is a

throughout-increasing function and possesses no finite opti-

mum. As described in [7], the edge sharpening effect hap-

pens only when φ is monotonically decreasing. Therefore,

Fig. 3. Examples of face images normalized by the proposed

method.

our proposed conduction function g has not the edge sharpen-

ing effect. This means that even strong discontinuities will be

smoothed eventually. However, we can expect the preserva-

tion of strong discontinuities because iteration number, which

is required for illumination normalization of a face image, is

very small(10 in our experiments).

The values of S and h can be selected by many exper-

iments, and we give the proper values of S(S = 1) and

h(h = 0.1) for face image normalization. Now, the corre-

sponding weights of the convolution mask w(t)(x, y) are de-

termined using α(x, y) and β(x, y) as follows:

w(t)(x, y) = α(x, y)β(x, y), ∀t (18)

For more accurate description of real environments, we ad-

dress an additional constraint that surfaces cannot reflect more

light than what is shed on them. We call this constraint smooth-

ing constraint. Thus, the reflectance R must be always smaller

than unity. Figure 2 summarizes the steps of our proposed

method for estimating and normalizing illumination, where

both smoothing constraint and adaptive weighting are applied.

3. EXPERIMENTAL RESULTS

In order to evaluate the robustness and effectiveness of the

proposed method, we used the images from Yale face database

B[8], and computed the recognition accuracies using PCA

algorithm[9]. The proposed method is also compared with

three other existing methods of illumination normalization:

SSR[3], SQI[2] and histogram equalization.

The Yale face database B contains 5,760 images taken

from 10 subjects under 576 viewing conditions(9 poses × 64

illumination conditions). Since we are only concerned with

the illumination problem in this paper, we selected 640 im-

ages for 10 subjects representing 64 illumination conditions

under the frontal pose. Images in the database are divided

into 5 subsets based on the angle of the light source direc-

tions. The 5 subsets are subset 1(0◦ to 12◦), subset 2(13◦ to

25◦), subset 3(26◦ to 50◦), subset 4(51◦ to 77◦), and subset

5(above 78◦). We refer to images in both subset 4 and subset

5 as images with large illumination variation. Figure 3 shows

examples of face images normalized by the proposed method.

First, we used subset 1 as training set and tested other sub-

sets. As shown in figure 4(a), the proposed method achieved
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(a) (b)

Fig. 4. Recognition accuracies(%) using (a)subset 1, and

(b)only the ideal images, as the training set.

(a) (b)

(c) (d)

Fig. 5. Recognition accuracies(%) using (a)subset 2 (test2),

(b)subset 3 (test3), (c)subset 4 (test4), and (d)subset 5

(test5) as the training set.

recognition rates of 100% in all subsets. Then, we only used

the 10 ideal images (one(0◦) for each subject in subset 1) as

a training set and tested other subsets. The results are given

in figure 4(b), and it is clear that the proposed method outper-

forms other methods. Finally, we used images in each of the

other subsets (2 to 5) as training set. Since subset 2 to 5 rep-

resent the illumination conditions close to real environments,

we can say that this test is more meaningful and practical than

two previous tests. As shown in figure 5, four tests are carried

out. Each testX denotes that the training set is from subset

X , where X = 2, 3, 4, 5, and the test is done for all subsets.

In each testX , 10 trials with other training set are averaged,

and only 10 images(one for each subject) are used for training

in each trial. From the figure 5, it is clear that the proposed

method has consistent and promising results even when im-

ages with large illumination variation (subset 4 and subset 5)

are used as the training set. Our method achieved high aver-

age recognition rate of 98.52% from all tests which only used

10 images(one for each subject) as training set.

4. CONCLUSION

In this paper, we proposed a novel method to estimate and

normalize illumination for robust face recognition. The essence

of our proposed method is the illumination estimation using a

new adaptive smoothing which is designed specially for face

recognition. For this purpose, we introduced couple of new

concepts; new conduction function and the additional con-

straint that are decided to be suitable to face images. Us-

ing the proposed method, we showed that even images with

strong shadow are effectively normalized, and consequently

some remarkable improvements in recognition capability are

observed and compared to the existing methods. We can ap-

ply the proposed method to any single face image without any

prior information.
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