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ABSTRACT 

In this paper we look into the problem of high-dimensional 
local descriptor matching for image identification on cul-
tural databases, presenting an important improvement over a 
classic method, the KD-Tree. Our method, the 3-Way Tree, 
uses redundant, overlapping sub-trees, in order to avoid the 
boundary effects that disrupt the KD-Tree in higher dimen-
sionalities, achieving more precision for the same querying 
times. 
 
Index Terms — local descriptors, image identification, 
nearest neighbor search, kd-tree, descriptor matching 

1.  INTRODUCTION 

Institutions possessing large image databases, such as mu-
seums, archives, and news agencies, often face the separa-
tion of an image from its metadata: the title, authors, de-
scription and other information are missing. This arises 
when source references are absent or irregular. Since the 
meaning of a document depends on its context, the lack of 
metadata reduces its usefulness. The institutions are asked 
to retrieve all information about a document, relying only on 
visual information. 

A related problem is the detection of copyright infringe-
ments. In this context, the users believe that a database con-
tain images of their possession. They want to confront this 
suspicious dataset against their own image set and find all 
intersections. 

Both problems are further complicated because the query 
images may have been distorted from the originals by trans-
lations, rotations, scale changes, changes in brightness and 
contrast, occlusions, etc. 

Some image retrieval methods are also adequate for im-
age identification. Local descriptors-based methods, in spe-
cial, have been shown to be of great value, due to their 
strong robustness to occlusions, cropping and geometric 
distortions. [3][6][8] Instead of creating a single descriptor 
per image, those methods will identify a large number of 
PoI (Points of Interest), and compute a local descriptor 
around each one of those points. 

In order to perform the identification, first, in an offline 
phase, which is done only once, the image set is prepared: 
each image has its PoI detected and described, and the de-
scriptors are indexed in a large database in order to facilitate 
the matching. Then, in the online phase, the PoI of the query 
image are detected and described, and each descriptor is 
matched with the descriptors in the database. Each matched 
descriptor votes to the image to which it belongs. 

This method is robust, because the descriptors are many. 
Even if some descriptors are matched incorrectly, giving 
votes for the wrong images, only a correctly identified im-
age will receive a significant amount of votes. 

Unfortunately, the multiplicity of descriptors brings also 
a performance penalty, since hundreds, even thousands of 
matches must be found in order to identify a single image. 
The matter is made worse by the high dimensionality of the 
descriptors, which makes each match operation very expen-
sive. 

In this paper we will devise a method that will allow us 
to match the descriptors efficiently, in order to benefit from 
the local descriptors advantages, without the performance 
drawbacks. In section 2 we will explain how the descriptor 
matching is performed, and why the dimensionality of the 
descriptors disrupts the process. In section 3 we will briefly 
explain the importance of reducing the number of random 
accesses to the disk. In section 4 we will introduce our 
method, the 3-Way Tree and explain how the overlapping 
sub-trees minimize the damaging effects of the growing 
dimensionality. In section 5 we explain how we set up the 
experiments to compare our method to the classic KD-Tree, 
and in sections 6 and 7 we present our results and conclu-
sions. 

2.  THE KD-TREE AND THE KNN SEARCH 

The matching of the descriptors is performed by an opera-
tion known as k nearest neighbors search or kNN search, 
which consists in finding the k elements which are the most 
similar to a given query descriptor. 

An obvious solution is the sequential search, where each 
element of the base is compared to the query, and the k most 
similar are kept. However, this brute-force solution is ac-
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ceptable only for small bases, being unfeasible in our con-
text. A better solution is to prearrange the data in an index, 
in order to accelerate the search. 

The KD-Tree is a classic data structure for multidimen-
sional indexing. Basically, it is a binary search tree where 
each node of the tree splits the search space along a given 
dimension. The sub-trees are thus implicitly associated to 
regions of the descriptors space. The leaves of the tree are 
called buckets, and contain a certain number of descriptors, 
which is decided a priori. 

For reasons of space, we can not give an account of this 
structure. Fortunately, the literature is overabundant on this 
subject. The reader is invited to refer to the original article 
on [4], and the excellent tutorial on [1], which is available 
on the World Wide Web.  

Unfortunately, the KD-Tree, like most kNN search meth-
ods, fails on high dimensional spaces. While the search time 
can be made to grow only logarithmically to the size of the 
base, it will grow exponentially to the dimensionality of the 
elements. For small dimensionality (between 2 and 12), it 
will perform efficiently enough to allow an exact or near-
exact solution in reasonable time.  

For higher dimensionalities, the KD-Tree can be adapted 
to give approximate results using a technique named Best-
Bin-First [5] or Priority KD-Tree Search [7], but for very 
high dimensionalities (more than 30) the trade-off between 
precision and efficiency will become progressively more 
severe. 

One of the worst problems for KD-Trees on higher di-
mensions is the aggravation of boundary effects. The prob-
ability that the query will fall near to at least one edge of the 
region associated to the leaf approaches 1 as the dimension-
ality increases, forcing the KD-Tree to explore many re-
gions in order to find a good set of approximate neighbors. 

3.  INDEXES AND DISK ACCESS 

Practical implementations of the naïve algorithm are surpris-
ingly difficult to beat, mainly because of its sequentiality. 
Once the database becomes too big to fit the primary mem-
ory, one faces the limitations of disk access, where sequen-
tial access is up to 10 times more efficient than random ac-
cess, because of the high costs involved in relocating the 
read/write magnetic heads. 

Every time the KD-Tree accesses a bucket (which are 
stored in the disk), it must make a random access. Because 
the order in which the buckets are accessed is essentially 
unpredictable, there is no way to optimize the disk access. 
Because of the boundary effects, many buckets may need to 
be visited, resulting in severe disk access costs. 

4.  THE 3-WAY TREES 

In order to avoid boundary effects, it would be desirable to 
choose a region where the query would be the most central-

ized possible. However, because the regions are built in the 
offline phase, for some queries it will be impossible to find 
a region where the query will be centralized. In fact, be-
cause of the aggravation of boundary effects on higher di-
mensionalities, it is almost certain that the query will fall 
near to the boundaries of at least one of the dimensions of 
the region. 

Customizing the partitioning for each query would be the 
ideal solution, but of course, its cost prevents it from being 
of practical consideration. The next best solution is provid-
ing some redundancy in the partitioning scheme, in the form 
of overlapping regions. In that way, the most adequate re-
gion can be selected, accordingly to the current query. This 
is the idea behind the 3-Way Trees. 

The 3-Way Trees are, essentially, ternary trees, where 
the left and right sub-trees are equivalent to the ones of a 
KD-Tree. The middle subtree, however, is overlapping. It 
adds redundancy to the tree, containing the same points as 
half each other sub-trees. [Figure 1] 

To build a 3-Way Tree, the following algorithm is used: 
1. The dimension with maximum interquartile range is 

determined. This dimension is chosen as the splitting 
dimension; 

2. The median element is chosen as the pivot for the 
partitioning, left and right sub-trees are thus bal-
anced; 

3. All elements smaller or equal than the pivot on the 
splitting dimension are put in the left subtree; 

4. All elements greater than the pivot on the splitting 
dimension are put in the right subtree; 

5. All elements greater than the first quartile and 
smaller or equal than the third quartile are put in the 
middle subtree; 

6. The three sub-trees are built recursively from the 
step 1; 

7. The recursion stops once the number of elements is 
small enough to fit in a bucket. A leaf is then created 
with all remaining elements. 
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Figure 1. A 3-Way Tree and its associated space. For 

clarity, only the middle branch is developed. 

Using the interquartile range (the difference between 
the third and first quartiles, i.e., the 75th and 25th percen-
tiles) as the criterion of spread in the 3-Way Trees is very 
important, since the sensitivity to outliers of other criterions 
(like the range, which simply takes the difference between 
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the maximum and minimum values) may spoil the results. In 
fact, as we are going to see, even the simple KD-Tree show 
benefits from using the interquartile range. 

The redundancy added by the 3-Way Trees is exploited 
in the search operation in the following manner: 

1. The tree is traversed top-down; 
2. The subtree to explore is determined, by choosing, 

among the 3 nodes, where the query falls the most 
centralized; 

3. If the chosen node is not a bucket, recurse to step 2; 
4. Otherwise, explore sequentially all the points on the 

bucket, choosing the k nearest neighbors. 
The greatest advantage of the 3-way Tree is that it keeps 

the query roughly centralized all the way down the search 
tree, avoiding the problems brought by boundary effects. In 
that way, only one leaf must be explored. Even for huge 
databases, all non-leaf nodes may be made to fit on primary 
memory. Therefore, only one random access must be made 
to the disk, resulting in savings in performance. 

The 3-way Tree exchanges the disk space occupied by 
the overlapping nodes for the increased performance. The 
offline processing time is proportional to the redundancy, 
due to the need of propagating the elements from level to 
level in the tree. The amount of disk space needed to store 
the leaves of the 3-way Trees is proportional to: 

  1
2

3  HN  Eq. 1. 
where N is the number of descriptors in the database and 

H is the height of the tree. 

5.  EXPERIMENTAL SETUP 

5.1.  Database: images and descriptors 

To compare the methods, we used a database consisting of 
15 transformations over 100 original images, summing up to 
1,500 images. Each image had its PoI detected and de-
scribed using SIFT, a very robust method, but one which 
uses descriptors of 128 dimensions — a very high dimen-
sionality [2]. The final base contained almost two million 
nine hundred thousand descriptors. The database contained 
photos from the XIX and early XX centuries.  
The transformations were three rotations, four scale 
changes, two shearings, four changes in the gamma curve 
and two smoothings (3×3 and 5×5 grids). [Figure 2] 

We’ve chosen those transformations because they distort 
to some extent the value of the descriptors, making the de-
scriptor matching meaningful. Croppings and occlusions, 
even if they are very important, make some points disappear 
altogether, while letting others pass with their exact values 
unchanged. Likewise, brightness and contrast changes are 
invariant under SIFT, so we opted for gamma changes in-
stead. 

5.2.  Compared methods 

We compared the 3-Way Trees with two versions of the 
KD-Tree, using different criterions of spread of the data: the 
range and the interquartile range. We wanted to isolate 
which gains were due to the use of the interquartile range 
and which were due to the redundant segments. 

In all methods, just the first bucket was explored. This 
was in order to put all methods in the same restriction that 
only one random access to the disk was allowed, and keep 
execution times the same. 

We set the maximum bucket sizes to 1024, 2048, 4096, 
8192 and 16384 descriptors. The actual bucket size varies, 
and was indicated in the horizontal axis of the graphs. 

For the sake of comparison, we also run the KD-Tree in 
a more conventional scenario, allowing it to make 16 ran-
dom accesses to the disk, using buckets of 1024 descriptors. 
This would take more than 10 times the execution time than 
the other methods, but it is instructive in order to see how 
much one would gain in precision. 

Original: Rotation: Shearing: 

 
Scale: Smoothing: Gamma: 

 
 

Figure 2. Original image and some transformations. 

5.3.  Measurements and ground truth 

Each one of the 100 original images had its descriptors 
computed, resulting in 263,968 query descriptors. The ex-
periment consisted in finding the 20 nearest neighbors of 
each one of those descriptors using each method.  

The answers were compared with a ground truth which 
was computed using the sequential search. Two measure-
ments were taken: 

 The percentage of queries were the first nearest 
neighbor was correct; 

 The average number of nearest neighbors among the 
20 that were correct. 

6.  RESULTS 

We compiled the results of the experiments in the three 
graphs of [Figure 3]. An important parameter in both meth-
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ods is the maximum allowed bucket size. The actual size of 
the buckets may vary, and is indicated in the horizontal axis. 
The size of the bucket corresponds to the number of de-
scriptors examined. 
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Figure 3. The results of the experiments. 

The worst case of the 3-Way Tree performed better than 
the best case of the KD-Tree. The performance of all meth-
ods grows with the size of the bucket, which is not surpris-
ing, since more descriptors get to be examined. 

Besides the results shown on the graphs of [Figure 3], we 
executed an independent run of the KD-Tree examining 16 
buckets of a maximum of 1024 descriptors (actual size of 
701 descriptors). It gave 99.8% correct first neighbors found 
and an average of 14.3 correct neighbors found. Being more 
than 10 times slower, the gains brought by a KD-Tree in 
this more conventional scenario did not compensate the 
drawbacks. 

7.  CONCLUSIONS 

We have been investigating ways of making high-
dimensional descriptor matching more efficient, by develop-
ing better heuristics for nearest neighbors search. We have 
added redundancy to the KD-Tree in order to boost its effi-
ciency on disk storage while keeping a very good precision. 
Using redundant regions, we avoided the boundary effects 
that plague the KD-Tree, keeping the queries roughly cen-

tralized all the way down the tree. We trade off the storage 
space of the overlapping regions for the gains in precision. 

Using our scheme, one can benefit from the precision 
brought by the use of local descriptors, while minimizing its 
performance drawbacks. The use of the 3-Way Trees allows 
us to do image identification in large cultural databases, 
using local descriptors, providing, at the same time, preci-
sion and timeliness. 
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