
3-WAY-TREES: A SIMILARITY SEARCH METHOD FOR HIGH-DIMENSIONAL
DESCRIPTOR MATCHING

Eduardo Valle1, Matthieu Cord2, Sylvie Philipp-Foliguet1

Équipes Traitement des Images et du Signal — ETIS UMR CNRS 80511
Laboratoire d’Informatique de Paris 6 — Université Pierre et Marie Curie2

valle@ensea.fr, matthieu.cord@lip6.fr, philipp@ensea.fr

ABSTRACT

In this paper we look into the problem of high-dimensional
local descriptor matching for image identification on cul-
tural databases, presenting an important improvement over a
classic method, the KD-Tree. Our method, the 3-Way Tree,
uses redundant, overlapping sub-trees, in order to avoid the
boundary effects that disrupt the KD-Tree in higher dimen-
sionalities, achieving more precision for the same querying
times.

Index Terms — local descriptors, image identification,
nearest neighbor search, kd-tree, descriptor matching

1. INTRODUCTION

Institutions possessing large image databases, such as mu-
seums, archives, and news agencies, often face the separa-
tion of an image from its metadata: the title, authors, de-
scription and other information are missing. This arises
when source references are absent or irregular. Since the
meaning of a document depends on its context, the lack of
metadata reduces its usefulness. The institutions are asked
to retrieve all information about a document, relying only on
visual information.

A related problem is the detection of copyright infringe-
ments. In this context, the users believe that a database con-
tain images of their possession. They want to confront this
suspicious dataset against their own image set and find all
intersections.

Both problems are further complicated because the query
images may have been distorted from the originals by trans-
lations, rotations, scale changes, changes in brightness and
contrast, occlusions, etc.

Some image retrieval methods are also adequate for im-
age identification. Local descriptors-based methods, in spe-
cial, have been shown to be of great value, due to their
strong robustness to occlusions, cropping and geometric
distortions. [3][6][8] Instead of creating a single descriptor
per image, those methods will identify a large number of
PoI (Points of Interest), and compute a local descriptor
around each one of those points.

In order to perform the identification, first, in an offline
phase, which is done only once, the image set is prepared:
each image has its PoI detected and described, and the de-
scriptors are indexed in a large database in order to facilitate
the matching. Then, in the online phase, the PoI of the query
image are detected and described, and each descriptor is
matched with the descriptors in the database. Each matched
descriptor votes to the image to which it belongs.

This method is robust, because the descriptors are many.
Even if some descriptors are matched incorrectly, giving
votes for the wrong images, only a correctly identified im-
age will receive a significant amount of votes.

Unfortunately, the multiplicity of descriptors brings also
a performance penalty, since hundreds, even thousands of
matches must be found in order to identify a single image.
The matter is made worse by the high dimensionality of the
descriptors, which makes each match operation very expen-
sive.

In this paper we will devise a method that will allow us
to match the descriptors efficiently, in order to benefit from
the local descriptors advantages, without the performance
drawbacks. In section 2 we will explain how the descriptor
matching is performed, and why the dimensionality of the
descriptors disrupts the process. In section 3 we will briefly
explain the importance of reducing the number of random
accesses to the disk. In section 4 we will introduce our
method, the 3-Way Tree and explain how the overlapping
sub-trees minimize the damaging effects of the growing
dimensionality. In section 5 we explain how we set up the
experiments to compare our method to the classic KD-Tree,
and in sections 6 and 7 we present our results and conclu-
sions.

2. THE KD-TREE AND THE KNN SEARCH

The matching of the descriptors is performed by an opera-
tion known as k nearest neighbors search or kNN search,
which consists in finding the k elements which are the most
similar to a given query descriptor.

An obvious solution is the sequential search, where each
element of the base is compared to the query, and the k most
similar are kept. However, this brute-force solution is ac-

I - 1731-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

ceptable only for small bases, being unfeasible in our con-
text. A better solution is to prearrange the data in an index,
in order to accelerate the search.

The KD-Tree is a classic data structure for multidimen-
sional indexing. Basically, it is a binary search tree where
each node of the tree splits the search space along a given
dimension. The sub-trees are thus implicitly associated to
regions of the descriptors space. The leaves of the tree are
called buckets, and contain a certain number of descriptors,
which is decided a priori.

For reasons of space, we can not give an account of this
structure. Fortunately, the literature is overabundant on this
subject. The reader is invited to refer to the original article
on [4], and the excellent tutorial on [1], which is available
on the World Wide Web.

Unfortunately, the KD-Tree, like most kNN search meth-
ods, fails on high dimensional spaces. While the search time
can be made to grow only logarithmically to the size of the
base, it will grow exponentially to the dimensionality of the
elements. For small dimensionality (between 2 and 12), it
will perform efficiently enough to allow an exact or near-
exact solution in reasonable time.

For higher dimensionalities, the KD-Tree can be adapted
to give approximate results using a technique named Best-
Bin-First [5] or Priority KD-Tree Search [7], but for very
high dimensionalities (more than 30) the trade-off between
precision and efficiency will become progressively more
severe.

One of the worst problems for KD-Trees on higher di-
mensions is the aggravation of boundary effects. The prob-
ability that the query will fall near to at least one edge of the
region associated to the leaf approaches 1 as the dimension-
ality increases, forcing the KD-Tree to explore many re-
gions in order to find a good set of approximate neighbors.

3. INDEXES AND DISK ACCESS

Practical implementations of the naïve algorithm are surpris-
ingly difficult to beat, mainly because of its sequentiality.
Once the database becomes too big to fit the primary mem-
ory, one faces the limitations of disk access, where sequen-
tial access is up to 10 times more efficient than random ac-
cess, because of the high costs involved in relocating the
read/write magnetic heads.

Every time the KD-Tree accesses a bucket (which are
stored in the disk), it must make a random access. Because
the order in which the buckets are accessed is essentially
unpredictable, there is no way to optimize the disk access.
Because of the boundary effects, many buckets may need to
be visited, resulting in severe disk access costs.

4. THE 3-WAY TREES

In order to avoid boundary effects, it would be desirable to
choose a region where the query would be the most central-

ized possible. However, because the regions are built in the
offline phase, for some queries it will be impossible to find
a region where the query will be centralized. In fact, be-
cause of the aggravation of boundary effects on higher di-
mensionalities, it is almost certain that the query will fall
near to the boundaries of at least one of the dimensions of
the region.

Customizing the partitioning for each query would be the
ideal solution, but of course, its cost prevents it from being
of practical consideration. The next best solution is provid-
ing some redundancy in the partitioning scheme, in the form
of overlapping regions. In that way, the most adequate re-
gion can be selected, accordingly to the current query. This
is the idea behind the 3-Way Trees.

The 3-Way Trees are, essentially, ternary trees, where
the left and right sub-trees are equivalent to the ones of a
KD-Tree. The middle subtree, however, is overlapping. It
adds redundancy to the tree, containing the same points as
half each other sub-trees. [Figure 1]

To build a 3-Way Tree, the following algorithm is used:
1. The dimension with maximum interquartile range is

determined. This dimension is chosen as the splitting
dimension;

2. The median element is chosen as the pivot for the
partitioning, left and right sub-trees are thus bal-
anced;

3. All elements smaller or equal than the pivot on the
splitting dimension are put in the left subtree;

4. All elements greater than the pivot on the splitting
dimension are put in the right subtree;

5. All elements greater than the first quartile and
smaller or equal than the third quartile are put in the
middle subtree;

6. The three sub-trees are built recursively from the
step 1;

7. The recursion stops once the number of elements is
small enough to fit in a bucket. A leaf is then created
with all remaining elements.

Root

Left Middle RightLeft Middle Right

Mid.Top Mid.Center Mid.Bottom(a, b,
c, d,
e, f,
g, h) c, d,

e, i
c, e,
g, k

g, k,
m, n

b

a
c

d

e

f g

h

k

l

m

n

o

i j

(i, j,
k, l,

m, n,
o, p)

... ...

p

Figure 1. A 3-Way Tree and its associated space. For

clarity, only the middle branch is developed.

Using the interquartile range (the difference between
the third and first quartiles, i.e., the 75th and 25th percen-
tiles) as the criterion of spread in the 3-Way Trees is very
important, since the sensitivity to outliers of other criterions
(like the range, which simply takes the difference between

I - 174

the maximum and minimum values) may spoil the results. In
fact, as we are going to see, even the simple KD-Tree show
benefits from using the interquartile range.

The redundancy added by the 3-Way Trees is exploited
in the search operation in the following manner:

1. The tree is traversed top-down;
2. The subtree to explore is determined, by choosing,

among the 3 nodes, where the query falls the most
centralized;

3. If the chosen node is not a bucket, recurse to step 2;
4. Otherwise, explore sequentially all the points on the

bucket, choosing the k nearest neighbors.
The greatest advantage of the 3-way Tree is that it keeps

the query roughly centralized all the way down the search
tree, avoiding the problems brought by boundary effects. In
that way, only one leaf must be explored. Even for huge
databases, all non-leaf nodes may be made to fit on primary
memory. Therefore, only one random access must be made
to the disk, resulting in savings in performance.

The 3-way Tree exchanges the disk space occupied by
the overlapping nodes for the increased performance. The
offline processing time is proportional to the redundancy,
due to the need of propagating the elements from level to
level in the tree. The amount of disk space needed to store
the leaves of the 3-way Trees is proportional to:

 1
2

3 HN Eq. 1.
where N is the number of descriptors in the database and

H is the height of the tree.

5. EXPERIMENTAL SETUP

5.1. Database: images and descriptors

To compare the methods, we used a database consisting of
15 transformations over 100 original images, summing up to
1,500 images. Each image had its PoI detected and de-
scribed using SIFT, a very robust method, but one which
uses descriptors of 128 dimensions — a very high dimen-
sionality [2]. The final base contained almost two million
nine hundred thousand descriptors. The database contained
photos from the XIX and early XX centuries.
The transformations were three rotations, four scale
changes, two shearings, four changes in the gamma curve
and two smoothings (3×3 and 5×5 grids). [Figure 2]

We’ve chosen those transformations because they distort
to some extent the value of the descriptors, making the de-
scriptor matching meaningful. Croppings and occlusions,
even if they are very important, make some points disappear
altogether, while letting others pass with their exact values
unchanged. Likewise, brightness and contrast changes are
invariant under SIFT, so we opted for gamma changes in-
stead.

5.2. Compared methods

We compared the 3-Way Trees with two versions of the
KD-Tree, using different criterions of spread of the data: the
range and the interquartile range. We wanted to isolate
which gains were due to the use of the interquartile range
and which were due to the redundant segments.

In all methods, just the first bucket was explored. This
was in order to put all methods in the same restriction that
only one random access to the disk was allowed, and keep
execution times the same.

We set the maximum bucket sizes to 1024, 2048, 4096,
8192 and 16384 descriptors. The actual bucket size varies,
and was indicated in the horizontal axis of the graphs.

For the sake of comparison, we also run the KD-Tree in
a more conventional scenario, allowing it to make 16 ran-
dom accesses to the disk, using buckets of 1024 descriptors.
This would take more than 10 times the execution time than
the other methods, but it is instructive in order to see how
much one would gain in precision.

Original: Rotation: Shearing:

Scale: Smoothing: Gamma:

Figure 2. Original image and some transformations.

5.3. Measurements and ground truth

Each one of the 100 original images had its descriptors
computed, resulting in 263,968 query descriptors. The ex-
periment consisted in finding the 20 nearest neighbors of
each one of those descriptors using each method.

The answers were compared with a ground truth which
was computed using the sequential search. Two measure-
ments were taken:

 The percentage of queries were the first nearest
neighbor was correct;

 The average number of nearest neighbors among the
20 that were correct.

6. RESULTS

We compiled the results of the experiments in the three
graphs of [Figure 3]. An important parameter in both meth-

I - 175

ods is the maximum allowed bucket size. The actual size of
the buckets may vary, and is indicated in the horizontal axis.
The size of the bucket corresponds to the number of de-
scriptors examined.

Correct first neighbour found

99,2% 99,6%

86,0%

91,2%

78,8%

85,6%

70%

80%

90%

100%

0 2000 4000 6000 8000 10000 12000

Size of bucket = Comparisons made

Pe
rc

en
ta

ge

3-Way
KD Interquartile
KD Range

Average number of correct neighbors found (of 20)

9,8

12,7

5,1

7,2
6,5

9,6

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000

Size of bucket = Comparisons made

Nu
m

be
r

of
 c

or
re

ct
 n

ei
gh

bo
rs

3-Way
KD Range
KD Interquartile

Figure 3. The results of the experiments.

The worst case of the 3-Way Tree performed better than
the best case of the KD-Tree. The performance of all meth-
ods grows with the size of the bucket, which is not surpris-
ing, since more descriptors get to be examined.

Besides the results shown on the graphs of [Figure 3], we
executed an independent run of the KD-Tree examining 16
buckets of a maximum of 1024 descriptors (actual size of
701 descriptors). It gave 99.8% correct first neighbors found
and an average of 14.3 correct neighbors found. Being more
than 10 times slower, the gains brought by a KD-Tree in
this more conventional scenario did not compensate the
drawbacks.

7. CONCLUSIONS

We have been investigating ways of making high-
dimensional descriptor matching more efficient, by develop-
ing better heuristics for nearest neighbors search. We have
added redundancy to the KD-Tree in order to boost its effi-
ciency on disk storage while keeping a very good precision.
Using redundant regions, we avoided the boundary effects
that plague the KD-Tree, keeping the queries roughly cen-

tralized all the way down the tree. We trade off the storage
space of the overlapping regions for the gains in precision.

Using our scheme, one can benefit from the precision
brought by the use of local descriptors, while minimizing its
performance drawbacks. The use of the 3-Way Trees allows
us to do image identification in large cultural databases,
using local descriptors, providing, at the same time, preci-
sion and timeliness.

8. ACKNOWLEDGEMENTS

Eduardo Valle is sponsored by CAPES through the
CAPES/COFECUB program. The photography database
was kindly provided by the Arquivo Público Mineiro, the
state archive of Minas Gerais, Brazil.

9. REFERENCES

[1] A. W. Moore. “An introductory tutorial on kd-trees,” extract
from Efficient Memory-based Learning for Robot Control,
Technical Report No. 209. Computer Laboratory, University
of Cambridge, 1991.

[2] D. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” in International Journal of Computer Vision,
Vol. 60, N. 2, pp. 91–110, 2004.

[3] E. Valle, M. Cord and S. Phillip-Foliguet, “Content-Based
Retrieval of Images for Cultural Institutions Using Local De-
scriptors,” in Geometric Modeling and Imaging — New
Trends (GMAI'06), 2006.

[4] J. H. Friedman, J. L. Bentley and R. A. Finkel, “An Algorithm
for Finding Best Matches in Logarithmic Expected Time,” in
ACM Transactions on Mathematical Software, Vol. 3, N. 3,
pp. 209–226, 1977.

[5] J. S. Beis and D. Lowe, “Shape Indexing Using Approximate
Nearest-Neighbour Search in High-Dimensional Spaces,” in
Proceedings of the 1997 Conference on Computer Vision and
Pattern Recognition (CVPR '97), p.1000, June, 1997.

[6] L. Amsaleg , P. Gros , S-A. Berrani, “Robust Object Recogni-
tion,” in Images and the Related Database Problems, Multi-
media Tools and Applications, v. 23 n. 3, p. 221–235, August
2004

[7] S. Arya. “Nearest neighbor searching and applications,” Tech-
nical Report CAR-TR-777, Center for Automation Research,
University of Maryland, June 1995.

[8] Y. Maret, S. Nikolopoulos, F. Dufaux, et al. “A Novel Replica
Detection System Using Binary Classifiers, R-Trees, and
PCA,” in International Conference on Image Processing, Par-
allel Computing in Electrical Engineering. IEEE, 2006.

I - 176

