
OBJECT RECOGNITION BY LEARNING INFORMATIVE, BIOLOGICALLY INSPIRED
VISUAL FEATURES

Yang Wu, Nanning Zheng, Qubo You, Shaoyi Du

Institute of Artificial Intelligence and Robotics
Xi’an Jiaotong University, Xi’an, 710049, P. R. China

ywu@aiar.xjtu.edu.cn, nnzheng@mail.xjtu.edu.cn, qbyou@aiar.xjtu.edu.cn, sydu@aiar.xjtu.edu.cn

ABSTRACT
This paper presents a novel, effective way to improve the

object recognition performance of a biologically-motivated

model by learning informative visual features. The origi-

nal model has an obvious bottleneck when learning features.

Therefore, we propose a circumspect algorithm to solve this

problem. First, a novel information factor was designed to

find the most informative feature for each image, and then

complementary features were selected based on additional in-

formation. Finally, an intra-class clustering strategy was used

to select the most typical features for each category. By inte-

grating two other improvements, our algorithm performs bet-

ter than any other system so far based on the same model.

Index Terms— object recognition, feature learning, vi-

sual cortex, biologically-inspired model, Caltech-101 database

1. INTRODUCTION

Since humans and other primates have great object recogni-

tion power that well outperforms any machine vision system,

building a system that emulates object recognition in visual

cortex has always been an attractive idea [1]. However, it’s

not easy to design a robust recognition system based on both

state-of-the-art neurophysiologic findings and powerful ma-

chine learning technologies.

Serre et al. [1] proposed a biologically-motivated frame-

work for robust object recognition, which used a hierarchical

image representation expanded from the standard model of

object recognition in primate cortex [2]. This framework al-

ternately performs template matching (tuning) and max pool-

ing operations to achieve a good trade-off between selectivity

and invariance. Its built-in gradual shift- and scale-tolerance

allowed it to outperform most contemporaneous complex com-

puter vision systems.

Serre et al.’s system was a successful attempt to bridge

the gap between computer vision and neuroscience, but it’s

still very simple. Many aspects of this framework could be
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modified to improve it. Wolf et al. [3] focused on discussing

different perception strategies in hierarchical vision systems

instead of Serre et al.’s feed-forward framework. Mutch and

Lowe [4] proposed many useful modifications that further im-

proved recognition performance on multi-class experiments.

These efforts resulted in much higher classification rates, but

they were still not as good as some newly proposed, well-

connected computer vision systems [5]. Much more work

should be done to find more powerful improvements.

In fact, Serre et al. [1] paid too little attention to a very

important bottleneck: the learning of visual features (pro-

totypes). They only sampled these features randomly from

training images or random natural images. Though Mutch

and Lowe [4] introduced an SVM-based supervised feature

selecting technique to find more discriminative features from

the randomly sampled prototype patches, it still depended

on the casual features which were very weak and desultory.

Furthermore, it was a totally supervised learning approach,

which disobeyed Serre et al.’s unsupervised learning assump-

tion. Instead, in this paper we propose an effective way to

learn many more informative visual features in an unsuper-

vised way based on biological evidences. Moreover, an intra-

class clustering strategy is introduced to reduce the redun-

dancy of candidate features. Meanwhile, some reasonable

improvements such as lateral inhibition and limitation of fea-

ture invariance presented in [4] are also used here to improve

recognition performance. In the multi-class recognition ex-

periments, we present better results than any of the systems

so far based on the same biologically motivated model.

2. BIOLOGICALLY MOTIVATED FRAMEWORK

Our framework is mostly based on that of Serre et al. [1], with

some small changes according to the base model described

in [4]. The model generates final features by alternating “S”

(simple cell) and “C” (complex cell) layers [6], which account

for the tuning and invariance properties respectively. It can be

summarized as follows:

Given an input image, we first convert it to grayscale and

scale the shorter edge to 140 pixels while maintaining the as-
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Fig. 1. A sample gray image and its C1 band maps (based on the true sizes). Rows indicate 4 orientations and columns show

the 8 bands of different scales.

pect ratio, as in [4]. Then, four steps are performed according

to the four hierarchical layers on the preprocessed image:

S1: A battery of Gabor filters is applied to the input im-

age, which can be described by:

G(x, y) = exp
(
− (X2+γ2Y 2)

2σ2

)
× cos

(
2π
λ X

)

where X = x cos θ + y sin θ and Y = −x sin θ + y cos θ.

There are, in total, 64 different well-chosen filters with 4 ori-

entations θ and 16 scales s that were listed clearly in [1]. Ev-

ery 2 scales form a band. In total, eight band maps with four

orientations are generated as S1 responses.

C1: This complex cell layer pools from the S1 layer by

performing an experimentally effective max operation over a

group of S1 cells within the neighborhood of each band. It

creates slight position and scale invariance. Fig. 1 shows an

example of a gray image and its corresponding C1 band maps.

Feature Learning Stage (during training only): Extract K
patches Pi=1,··· ,K of various sizes ni × ni as a vocabulary

of prototype features. Each patch still has 4 orientations for

keeping the directional information.

S2: Apply each patch (prototype) as a filter to the C1 band

maps to generate responses according to the Gaussian radial

basis function:

R (X, P ) = exp
(
−‖X−P‖2

2σ2α

)
.

This function was proposed in [4] as an improvement over the

original model, where σ was set to 1 and α was a normaliz-

ing factor for different patch sizes. It measures the similarity

between the S2 cells and a trained patch.

C2: For each patch, C2 performs the max operation over

all the eight bands (across positions and scales) to get a final

maximum response. By doing this, it generates a K-dimensional

vector as the shift- and scale-invariant C2 feature representa-

tion of the input image.

After normalization to each dimension of the C2 features,

the C2 feature vector is ready for classification. Usually, an

SVM classifier is used to do the final analysis.

3. LEARNING INFORMATIVE FEATURES

The above framework compromises selectivity and invariance

by alternating tuning and max pooling operations, but ob-

viously the important learning process that generates proper

vocabulary of prototypes for the two upper layers has been

treated cursorily. To improve it, we designed a circumspect

algorithm to learn informative features (prototypes) from the

training C1 band maps. It includes the following three steps.

3.1. Finding the most informative features

We consider all the possible predefined patch sizes as long as

they do not exceed 50% of the shorter edge of the C1 band.

For each patch size, we examine patches in positions placed

on a regular grid with a step of 1/3 patch size. For every patch,

an information factor is computed to evaluate its importance:

IF (P ) =
S (Pmax)

βn2
+

S
(
Pmax − Pmin

)
βn2

where P is the candidate patch with size n×n, β is a balanc-

ing factor for patches with different sizes, and

S (I) =
∑
i

∑
j

I (i, j)2

Pmax = arg max
P k∈Φ(P )

S
(
P k

)

Pmin = arg min
P k∈Φ(P )

S
(
P k

)

with Φ(P ) denotes the set of different orientation parts of

patch P . The first part of IF (P ) indicates the average energy

or response strength of the most notable orientation, while the

latter describes the distinctness of the direction information.

It is biologically reasonable that the bigger the information

factor IF (P ) is, the more informative the patch is. Thus, for

each training image, the patch with the highest information

factor score is selected as the maximal informative feature

(prototype). Note that this definition of information factor

is trying to characterize the informativeness of local contrast

and regular directional information of the patches. It may not

be the optimal measure for selecting the most discriminative

features towards classification.

3.2. Selecting complementary features

If some features have been extracted, the next feature to be

selected should deliver the maximal amount of additional in-

formation with respect to previously selected features. There-

fore, an update stage was designed to refresh the band where

I - 182



the last selected feature stayed by setting all the pixels cov-

ered by that feature to zero. Then, the same extracting rule

presented in Section 3.1 is applied to select optimal comple-

mentary features one by one until the number of selected fea-

tures has reached a predefined limit or the additional infor-

mation factor score has fallen beneath a certain percent of the

summed information factor score of the former features.

3.3. Clustering intra-class features

To control the dimensionality of C2 features, the number of

prototype features needs to be fixed in a certain range. How-

ever, the number of training images might be so large that

the average number of prototypes assigned to each image is

quite small. For avoiding losing useful information of each

training image, we choose to extract adequate features from

each image using the above approach and then perform a k-

means clustering on each category to get typical intra-class

features. To respect the features extracted from real training

images, a nearest neighbor scheme is used to find the features

nearest to the cluster centers. Different patch sizes are treated

separately. This strategy balances information coming from

different images within a category while at the same time re-

ducing the redundancy, and it can perform better if there are

more training images. However, the intra-class clustering is

supervised. We think it’s reasonable that some limited super-

vised learning may exist in primary visual cortex.

4. OTHER IMPROVEMENTS

Two of the more useful improvements proposed in [4] are

used here to get better performance. We inhibit C1 outputs

by suppressing relatively smaller responses to make the di-

rectional information more obvious. At the same time, limit-

ing position and scale invariance of S2 features can make use

of the statistical information when the training and testing set

have their contained objects arranged at similar positions and

scales. If the system doesn’t have this property, the second

improvement should be removed or changed.

5. EXPERIMENTS

For a close and equitable comparison with other systems based

on the same biologically motivated model, we chose to do our

experiments on the Caltech-101 database [7], which has be-

come a de facto standard for evaluating algorithms for multi-

class category-level recognition, though it lacks in several

important sources of intra-class variability [8]. We ran our

model on the entire set containing 102 categories. 10 inde-

pendent repetitions were performed on both 15 and 30 train-

ing examples per class respectively to get average recognition

rates. As in [4], up to 100 of the rest of the images in each

class were randomly sampled to work as the test set.

(a) ant

(b) cougar body

Fig. 2. Extracted candidate patches (green and red) and finally

selected patches after intra-class clustering (red) of two hard

categories when 15 images are trained, best viewed in color.

(a) ant, (b) cougar body.

To get a similar feature dimension to [1], 40 patches (fea-

tures) per category (except the background) were learned to

form a total prototype vocabulary of 4040. Instead of using

only band 2 for patch extracting, three bands (bands 2, 4, and

6) with proportional spacing were chosen to make the learned

patches scale-invariant. Patch sizes were also fixed to 4, 8,

12, and 16, but the numbers of patches of each size were

made adaptive to the patches’ performance. The balancing

factor β is set to 1
n , avoiding bias to the smallest size. We ex-

perientially extracted 10 candidate patches per image before

clustering, regardless of how many images per category were

used for training. The inhibition level was set to 0.5 and the

invariance of the generated C2 features was fixed to ±5% of

the possible position and ±1 of the scale as were in [4].
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Fig. 3. Confusion matrix of the Caltech-101 database with 15

training images per class.

Fig. 2 shows the candidate patches and finally selected

patches of two hard categories: “ant” and “cougar body,” when

using 15 training images. These two categories are hard to

handle for most systems because they vary greatly in pose,

view, background, and quality. However, our learning algo-

rithm can focus on the most informative areas, catching the

patches with strong directional information and high contrast.

The clustering strategy then selects the most typical ones that

are most common to appear. From the “ant” training samples

we can see that the legs and typically shaped body parts are

more easily selected than the corners and the backgrounds.

Of course, some similarly shaped backgrounds, or those with

obviously strong edges, may also be falsely chosen.

Model 15 training
images/cat.

30 training
images/cat.

Mutch & Lowe (base) [4] 33 41

Serre et al. [1] 35 42

Mutch & Lowe (final) [4] 51 56

Wolf et al. (best result) [3] 51.18(±1.2)

Our system 52.16(±1.0) 60.23(±0.8)

Table 1. Correctness rates of systems based on the same bi-

ologically motivated model for the Caltech-101 database (in

percentage, and std dev. where available).

The final tested results are summarized in Table 1, com-

paring our system to other systems. Our system performs best

by using relatively simpler improvements. The confusion ma-

trix for 15 training images is presented in Fig. 3. If the pa-

rameters are optimized by tuning carefully as was done in [4],

our system might perform even better.

6. CONCLUSION AND FUTURE WORK

This paper presents an effective solution for the important

learning bottleneck of a biologically-motivated model. In-

stead of using randomly sampled features or an SVM-based

supervised selecting strategy, we designed our learning al-

gorithm mainly according to the unsupervised learning as-

sumption in the primary visual cortex. A novel information

factor was proposed to extract the most informative features

and the optimal complementary features based on their ad-

ditional information. An intra-class clustering strategy was

also used to select the most typical ones from the extracted

features, while at the same time reducing the information re-

dundancy of all the training images. Together with two other

improvements, our system performs better than any other sys-

tem based on the same biologically-inspired model on the

Caltech-101 database, though it hasn’t exceeded the best pub-

lished results reached by other computer vision or pattern

recognition based systems on this database recently.

Future work could be done on two issues: one is find-

ing proper schemes for dealing with heavy clusters; the other

is introducing rotation-invariant descriptors or effective algo-

rithms to adapt to object rotations, view changes, and even

deformations to some extent.
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