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ABSTRACT

We solve the semi-supervised multi-class object classification
problem by a graph-based learning algorithm, called Lapla-
cian Affinity Propagation (LAP). The idea is to model and
train both labeled and unlabeled data by constructing a local
neighborhood affinity graph in a smoothness formulation of
Laplacian matrix, based on graph mincuts or harmonic energy
minimization. The unknown labels for unlabeled data are in-
ferred from an optimized graph embedding procedure subject
to the labeled data. Such label-to-unlabel propagation scheme
can provide a closed form solution via a learning framework
that is flexible for any new design. LAP integrates embedding
and classifier together and gives smooth labels with respect to
the underlying manifold structure formed by the training data.
Object classification experiments on COIL database demon-
strate the effectiveness and applicability of such algorithm.

Index Terms— Semi-supervised learning, local affinity,
graph embedding, spectral clustering, object classification.

1. INTRODUCTION

Labelling large size of training database is often tedious and
even intractable in many learning-based problems, such as ob-
ject classification and high-dimensional data clustering. In
addition, some particular databases are lack of sufficient la-
belling for some reasons in practice. Can partially labeled
training data still give comparable results to the fully labeled
ones? Semi-supervised learning [18, 15] algorithms are such
kind of techniques that learn from both labeled and unlabeled
samples [17, 13, 16] for the purpose of pattern classifica-
tion or data mining. The state-of-the-art algorithms of trans-
ductive learning [19] or inductive learning work by formu-
lating the general assumption that nearby points and points
belonging to the same manifold structure should have simi-
lar labels [12, 5]. This assumption is quite consistent with
that of the recently developed manifold learning techniques.
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Those algorithms, such as Locally Linear Embedding (LLE)
[2] and Laplacian Eigenmaps (LE)[3], model the local neigh-
borhood structure with an affinity graph and find the low-
dimensional manifold space through global nonlinear embed-
ding. It is straightforward to extend manifold learning meth-
ods to a semi-supervised dimensionality reduction framework.

Many related works have been presented recently for clus-
tering, information retrieval, and pattern recognition. Com-
prehensive reviews and discussions are available in both [13]
and [4]. Graph Mincuts (GM) [16] and Harmonic Energy
Minimization (HEM) [14] achieve binary classification by min-
imizing a harmonic energy function. Locality Preserving In-
dexing (LPI) [11] extends the LE framework to a linear em-
bedding way of document clustering. Locally Embedded Anal-
ysis (LEA) [1] extends the LLE objective to the linear sub-
manifold learning and dimensionality reduction. Linear Neigh-
borhood Propagation (LNP) [5] learns the neighborhood lin-
ear reconstruction weights for modeling and predicts the la-
bels of unlabeled data from the labeled data.

In view of the foregoing work, we extend the GM and
HEM framework to a more general multiple object classifica-
tion scenario and present a semi-supervised algorithm, called
Laplacian Affinity Propagation (LAP). The idea is to model
both labeled and unlabeled data by constructing a locality
affinity graph in a general smoothness formulation of Lapla-
cian matrix. The unknown labels for unlabeled data are pre-
dicted from an optimized graph embedding procedure sub-
ject to the labeled data. Such label-to-unlabel propagation
can provide a closed form solution based on a flexible learn-
ing framework. LAP integrates both embedding and classifier
and gives smooth labels with respect to the underlying mani-
fold structure formed by the labeled and unlabeled data. We
test the proposed algorithm on benchmark data sets for the
applications of data clustering and object classification.

It is worthwhile to highlight several key advantages of
LAP framework. First, LAP is for multi-class problem and
has closed form solution. Secondly, the framework can be
conveniently extended to out-of-sample cases. Finally, LAP
considers the semi-supervised case for graph embedded man-
ifold learning which is ignored in conventional methods.
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2. LAPLACIAN AFFINITY PROPAGATION

2.1. Algorithm Objective

Consider a given data set X = {xi : xi ∈ R
D}ni=1, our

goal is to find an associated label set Y = {yi : yi ∈ N}
n
i=1

to describe the underlying affinity of X as much as possible.
Suppose a small part of the data with size m (m < n) has
already been labeled as Yl = {yi : yi = li}

m
i=1. The problem

is re-formulated to find the unknown label set Yu = {yi :
yi ∈ N}

n
i=m+1 subject to known label Yl and data X . Here

we have Y = Yl ∪ Yu and X = Xl ∪Xu for Xl = {xi : xi ∈
R

D}mi=1 and Xu = {xi : xi ∈ R
D}ni=m+1.

In matrix and column vector forms, we rewrite the above
representations as X = [Xl Xu] and y = [yl; yu], where
Xl = [x1 x2 · · · xm], Xu = [xm+1 xm+2 · · · xn],
yl = [y1 y2 · · · ym]

T and yu = [ym+1 ym+2 · · · yn]
T .

Define n × n affinity matrix A = {aij}
n
i,j=1 = f(X ), as a

function of X , denoting the affinity weights for each pair of
data points, diagonal matrixD(i, i) =

∑
j aji, and Laplacian

matrix L = D − A. To solve this problem, we define the
Laplacian Affinity Propagation (LAP) algorithm conforming
to the following objective function [14, 3, 4, 5, 15],

yu = argmin
yl

yT g(L)y. (1)

where g(·) is a smoothness function of matrix L. e.g. g(L) =
L [14], g(L) = L2, or g(L) = exp(−L) [4]. The local affin-
ity of the original data space is propagated via Laplacian affin-
ity matrix to the 1-D label space after the embedding. That is
why we call this algorithm “Laplacian affinity propagation”.

The basic idea of LAP is to generalize the common formu-
lation for GM, HEM, LNP, and LE, since they all share a sim-
ilar latent objective function in Equation 1; and apply semi-
supervised learning technique to object classification scenario.
Particularly, LAP has several good properties: (1) It aims at
semi-supervised learning for multi-class problems; (2) The
constraint on solving the objective function is straightforwardly
the known labels instead of an empirical constraint that de-
fined for conveniently solving mathematical formulations; (3)
LAP is a hybrid framework integrating both embedding and
classifier. The embedded space of LAP consists of 1-D dis-
criminant labels for classifying the original data; (4) Out-of-
sample problem is well-defined in LAP.

2.2. LAP Solution

Suppose the matrix g(L) is partitioned into following 4 matrix
blocks [14] with size of m ×m for Ll, (n −m) × (n −m)
for Lu,m× (n−m) for Llu, and (n−m)×m for Lul,

g(L) =

[
Ll Llu

Lul Lu

]

. (2)

The embedding of yu is derived from a closed form solution,

yu = −L
−1
u Lulyl. (3)

To overcome the intractable case when Lu is singular or
nearly singular, a regularization parameter r is added so that
L̃u = Lu + r · trace(Lu) · I is invertible. Here I is the (n−
m)× (n−m) identity matrix.

2.3. Out-of-Sample Extension

For practical applications, we consider the case of large size
training data in the identical distribution. To label an out-of-
sample, e.g. xt, we add xt to the given data set X and have a
new data matrix X̃ = [Xl Xu xt]. Form the (n+1)×(n+1)
matrices Ã, D̃ and L̃. Partition L into blocks, we have

g(L̃) =

⎡

⎣
L̃l L̃lu Llt

L̃ul L̃u Lut

Ltl Ltu Lt

⎤

⎦ , (4)

where L̃l, L̃u, L̃lu, and L̃ul are different matrices from Ll,
Lu, Llu, and Lul because of the influence of xt on A. The
sizes of Llt, Lut, Ltl, Ltu, and Lt are m × 1, (n −m) × 1,
1×m, 1× (n−m), and 1× 1 respectively. According to the
solution in Equation 3, we have

yt = −
[Ltl Ltu] y

Lt

. (5)

We should be aware of the dependence of Ltl and Ltu on
the change of Ll, Lu, Llu, and Lul after new data added.

2.4. Affinity Matrix

It is flexible to design new embedding metric via LAP frame-
work. The essential trick to form the affinity matrix is to
measure and encode the connectivity among the original data
points {xi}

n
i=1. This connectivity can be defined in two ways:

(1). k-nearest neighbors: The case when xi is one of the k-NNs
of xj and vice versa.
(2). ε-nearest neighbors : The case when ‖xi − xj‖

2 < ε.

After building the connection graph, three straightforward ways
for setting the weights are listed as follows[11, 13, 2]:
(1). Gaussian kernel: SetA[i, j] = aij = exp(−‖xi−xj‖

2/t)
when xi and xj are connected, otherwiseA[i, j] = aij = 0
(2). 0-1 weights : Set A[i, j] = aij = 1 when xi and xj are
connected, otherwiseA[i, j] = aij = 0.

(3). LLE weights : Set A[i, :] =
G

−1

i
1

1TG−1

i
1
, when xi and xj are

connected, where Gram matrixGi is defined in [2, 1], otherwise
A[i, j] = aij = 0.

From above definitions, we have two free parameters, k (or ε)
and t, that need to tune in practice.

3. THEORETICAL JUSTIFICATION

To solve the Equation 1, we form the Lagrangian function

G(y, λ) = [yT
l yT

u ]

[
Ll Llu

Lul Lu

] [
yl

yu

]

+λT (yl− �), (6)
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Fig. 1. Clustering results of LAP in the first row and K-means in the second row for 7 cases. (a) 4 clusters; (b) 3 clusters; (c) 4
clusters; (d) 2 clusters; (e) 3 clusters; (f) 3 clusters. The data of (b)(c)(e)(f) are from [7].

where λ is the Lagrange multiplier vector and � (= yl) is the
label vector for Yl. We convert this constrained optimization
problem into an unconstrained one by taking the derivative
∂G(y, λ)/∂yl = 0. After some steps, it follows

λT = −2yT

l
Ll − yT

u
Lul − yT

u
LT

lu
. (7)

Substitute λT in Equation 6 by Equation 7 and take an-
other derivative ∂G(y, λ)/∂yu = 0. We have

2Luyu + Lul�+ LT

lu
� = 0. (8)

Since g(L) as well as A is usually symmetric, we notice
the fact that Llu = LT

ul
and Lul = LT

lu
. After some algebraic

steps, we finally get the Equation 3.

4. EXPERIMENTS

4.1. Clustering

For data clustering, we apply LAP and K-means to 7 clus-
tering problems shown in Figure 1. The Gaussian kernel is
used to build the connection graph. The data of (b)(c)(e)(f) is
from [7] and online available1. As for semi-supervised clus-
tering, we assume the number of clusters is known. The data
points are represented by their coordinates in the 2-D space.
The results of different clusters found are shown via different
symbols and colors. We plot the clustering results of LAP
in the first row and K-means in the second row in Figure 1.
It appears that LAP performs accurate and robust, even for
clusters that do not form convex regions. LAP reliably finds

1http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html

Fig. 2. Samples of COIL-20 object image database.

clusterings consistent with subjective observations. Unfortu-
nately, K-means easily fails in all the 7 cases though we re-
peat the clustering for 50 times in each run. We know that
other methods, such as [8] and [7], can also give good results
for these problems, but LAP is applicable to more scenarios
of machine learning, such as object classification, since it can
analyze high-dimensional data in a manifold learning manner.

4.2. Object Classification

The COIL-20 database [9] is used in our experiments for ob-
ject classification. This database consists of 20 different ob-
jects. Each object has 72 gray-scale images in total. The im-
ages of the objects were taken at pose intervals of 5 degrees
around each objects. All the 1,440 images were normalized
to 128× 128. We further resize the images to 32× 32 and re-
arrange them to vectors in column style with 1,024 dimension
for each. Figure 2 shows the sample images of the 20 objects.

We select 4 and 6 images of each object to form two train-
ing sets. The sequence numbers of selected images in the
database are [1, 18, 36, 54] and [1, 12, 24, 36, 48, 60] re-
spectively. For comparison, we also test the object classifi-
cation through k-Nearest Neighbor (K-NN), Principal Com-
ponent Analysis (PCA) [10] plus K-NN, Linear Discriminant
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Table 1. Algorithm comparison on COIL-20 with 4 images
of each object for training and 68 images of each for testing.

Method Parameter Dim. � Error Rate (%)
(k, σ2, t) (T., B.) (� / 1360)

K-NN kNN = 1 1024 20.22 (275/1360)
PCA+K-NN kNN = 1 20 (T) 20.51 (279/1360)
LDA+K-NN kNN = 1 19 (T) 16.76 (228/1360)
GKPCA [6] σ2

=? 20 (T) 18.31 (249/1360)
SFA [6] σ2

=? 20 (T) 18.31 (249/1360)
LEA+NN k = 3 533 (B) 18.31 (249/1360)
LAP k = 2, t = 0.04 1 15.15 (206/1360)

Analysis (LDA) [10] plus K-NN, Gaussian Kernel PCA [6]
(GKPCA), Spectral Feature Analysis (SFA) [6], and Locally
Embedded Analysis (LEA) [1] plus NN. We take K-NN as
the baseline classifier. For simplification, the kNN is set to
1. Since LAP integrates the embedding and classifier, we do
not need a classifier. The Gaussian kernel is used to build the
connection graph for LAP. We choose a linear smoothness
function. In the testing, we label the training data with in-
tegers 1, 2, . . . , 20. For the estimated labels of the unlabeled
data, we simply round them to nearest integers. The results
for the two cases of test are summarized in Table 1 and Ta-
ble 2 respectively. All the reported results of those methods
are obtained by best tuning the associated parameters listed in
the tables. The results of SFA and GKPCA are from [6], but
the parameters are not reported. We observe that LAP con-
sistently outperforms all the listed methods with lowest error
rate of 15.15% and 5.45% in the two tests. It also gives the
lowest number of reduced dimension that is only 1. More-
over, SFA, LEA and GKPCA are comparable to each other
and reasonably better than baselines in this scenario.

5. CONCLUSION

We solve the multi-class semi-supervised clustering and ob-
ject classification using LAP algorithm. LAP defines the semi-
supervised problem in a manifold learning manner and gives
the solution in closed form. The solution can also be easily
extended to out-of-sample cases. This brings many interest-
ing research directions for future work, such as interactive im-
age segmentation, face recognition, and information retrieval.
Another point we need to address is the computation issue.
When the number of training data is too large, similar to any
graph embedding methods, LAP will suffer from the lower
computation power and out of memory space in common PCs.
We are planning to explore the algorithm based on block ma-
trix decompositions to tackle this difficulty in future.
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