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ABSTRACT

This paper introduces a new theoretical model on the rate-distortion
performance in transmitting multi-view image data. To reduce the
data amount, a practical solution is just decreasing the number of
images by subsampling. The questions we focus on are (i) how
much bit-rate can be reduced, and (ii) how much additional distortion
would be caused, by the subsampling of images. In our theoretical
model, the rate-distortion theory and the plenoptic sampling theory
are combined to consider the relation between the sampling condi-
tion (the cameras’ interval) and the compression efficiency. Numer-
ical simulations which show the theoretical lower bounds for (i) and
(ii) are presented with discussions.

Index Terms— Rate distortion theory, Image coding, Signal
sampling, Interpolation

1. INTRODUCTION

Multi-view imaging has attracted increasing research interests re-
cently, and this will open new possibilities of rich 3-D experiences
in many application areas such as telecommunication, broadcasting,
movies, and gaming for the near future. One of the important issues
in this field is how to compress the huge amount of image data for
transmission and storage. Many researchers have focused on how to
exploit intra/inter-image correlations in the multi-view data to im-
prove the compression ratio, and demonstrated promising results not
only for still images but also for videos [1, 2, 3, 4].

However, the relation between the sampling condition and the
compression efficiency has been rarely discussed. The sampling
condition here means the density of the cameras for capturing multi-
view images. One might think that just decreasing the number of
images is a practical solution for reducing the data amount. For ex-
ample, if the images are skipped alternately (in this paper, we call
it “subsampling of images”), the number of images becomes to the
half. However, reducing the images results in a larger camera inter-
val, less correlations between the images, and accordingly less com-
pression ratio, so that the final data amount might not be reduced
as expected. In addition, it causes additional distortions, because
the discarded images never can be reconstructed completely. Conse-
quently, we should know (i) how much bit-rate could be reduced, and
(ii) how much additional distortion would be caused, by the subsam-
pling of images. This paper studies the above issues with our new
theoretical model that combines the rate-distortion theory [5, 6, 7]
and the plenoptic sampling theory [8].

2. BACKGROUNDS

As the backgrounds, we briefly review the rate-distortion theory [5,
6, 7], and the plenoptic sampling theory [8], both of which are com-
bined in our theoretical model.

2.1. Rate-distortion theory for image compression

Assume that an image is a stationary, jointly Gaussian, zero means
2-D signal on the (u, v) coordinate system, and its power spectrum
density (PSD) function, Φ(ωu, ωv), is given by:
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where ρ is the correlation coefficient between adjacent pixels in the
image. For a given mean squared error:
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where θ is a parameter that determines the maximum allowable error
for each frequency band [5]. Changing the value of θ, we can trace
the rate-distortion curve.

This theorem has been also applied to analyze video coding and
multi-view coding schemes with inter-image predictions [6, 7]. To
calculate R(θ) and D(θ) for a predicted image, the PSD function of
the residual signal: i.e. the remaining components after the predic-
tion, Φrr(ωu, ωv), substitutes for Φ(ωu, ωv) in Eqs. (2) and (3).

2.2. Plenoptic sampling theory

Assume that input images are captured with many cameras that are
arranged in a 2-D array. A continuous signal space, which is called
a light-field, can be defined with 4 parameters, (s, t, u, v), in which
(s, t) denotes the cameras’ locations, and (u, v) denotes the pixels’
positions on the camera that is located at (s, t). Multi-view images
can be regarded as a discretely sampled version of the continuous
light-field signal. Figure 1 depicts the 2-D subspace with (s, u).

Chai et al. [8] assumed that non-Lambertian reflections and oc-
clusions are negligible, and analyzed multi-view image data in the
frequency domain, (ωs, ωu). They have revealed the condition in
which the continuous light-field signal can be reconstructed from the
discrete multi-view data without aliasing artifacts. Given a geometry
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Fig. 1. Basic configuration.

model of the scene that is optimally quantized into Nd depth layers,
the sampling interval along the s direction, Δs, should satisfy:

Δs

Nd

≤
1

Kfu
fhd

(4)

where Kfu
is the maximum frequency along the u direction, and f

denotes the focal length of the cameras. hd is given as (1/zmin −
1/zmax) where the depth of the target scene (the distance from the
st plane) ranges from zmin to zmax.

Equation (4) can be understood in another way. Let FNyq be the
Nyquist frequency on each camera which is given as (1/Δu) for the
pixel pitch Δu. It is obvious that

Kfu
≤

FNyq

2
(5)

should be satisfied to avoid aliasing artifacts along the u direction.
We can define the ideal sampling rate (the ideal interval between the
cameras), ΔS, to satisfy Eq. (4) for Kfu

= FNyq/2:
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·
2
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(6)

By substitution of Eq. (6) into Eq. (4) and from Eq. (5), we obtain:
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2
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This equation indicates that if the cameras’ interval Δs is larger
than the ideal sampling rate ΔS, we should band-limit the light-field
spectra according to the ratio of ΔS/Δs to avoid aliasing artifacts
in reconstructing the continuous light-field.

3. OUR THEORETICAL MODEL

In this section, a novel theoretical model for analyzing subsampling
and rate-distortion performance of multi-view images is introduced.
The rate-distortion theory [5] and the plenoptic sampling theory [8]
are successfully combined to derive the relation between the sam-
pling interval and the compression efficiency.

We adopt the same configuration as Fig. 1, but limit the scope of
discussion to the 3-D light-field, (s, u, v), in which the input cameras
are aligned only in the horizontal direction that is denoted by the s
axis, and (u, v) represents the pixels’ positions on each camera. As-
sume that a geometric model of the scene that is optimally quantized
into Nd depth layers, which was also assumed in [8], would be given
and transmitted as side information.

3.1. Subsampling and Rate-Distortion

In this subsection, we formulate the variations of the minimum rate
and the minimum distortion that would accompany subsampling.

Suppose that the multi-view images are skipped alternately, so
that the number of images becomes to the half. Let S represent the
set of skipped images which are discarded, and T represent the set of
remaining images after the subsampling which is encoded and trans-
mitted to a remote site. At the remote site, the image set T ′, which
is distorted from T due to the lossy coding, would be reconstructed
from the transmitted data. Then, the image set S would be predicted
from T ′.

The questions are, by discarding the image set S, (i) how much
bit-rate can be reduced, and (ii) how much distortion will be in-
creased, compared to the case in which the entire image data T + S
would be encoded and transmitted. In both cases, inter-image corre-
lations should be fully exploited to minimize the rate and distortion.
We do not discuss how to encode the data specifically, but we just
assume that the ideal codec that yields the best result would be used,
and analyze the theoretical limitations.

To answer the above questions, let us consider a two-steps cod-
ing scheme in which the image set T is encoded first, then the image
set S is encoded with the knowledge of T ′. An identical θ is adopted
for both steps. For the first step, the minimum rate and the minimum
distortion are denoted as RT (θ) and DT (θ), respectively. In this
step, inter-image correlations within T would be fully used as well
as intra-image correlations. For the second step, the minimum rate
and the minimum distortion are written as RS|T ′(θ) and DS|T ′(θ),
respectively, where S|T ′ represents the residual signal that would be
generated by the prediction of S from T ′. The residual signal would
be coded using intra-image correlations only.

Since the same number of images are included in S and T , the
total minimum rate is equal to the average for the two steps:

R{T,S|T ′}(θ, θ) =
RT (θ) + RS|T ′(θ)

2
(8)

Similarly, the total minimum distortion is represented by

D{T,S|T ′}(θ, θ) =
DT (θ) + DS|T ′(θ)

2
. (9)

Since this two-step scheme is one of the schemes for encoding the
entire image data T + S, the followings are true by definition:

R{T,S|T ′}(θ, θ) ≥ RT+S(θ) (10)

D{T,S|T ′}(θ, θ) ≥ DT+S(θ) (11)

where RT+S(θ) and DT+S(θ) denote the minimum rate and the
minimum distortion for the entire image data with inter/intra-image
correlations fully exploited.

In case of with subsampling, the image set S is not encoded, so
that θ = ∞ is substituted for the second step in Eqs. (8) and (9).
The difference of the minimum rate with or without subsampling is
described as:

ΔR(θ) = R{T,S|T ′}(θ,∞)−RT+S(θ)

=

j
RT (θ) + RS|T ′(∞)

2

ff
−RT+S(θ) (12)

where RS|T ′(∞) = 0. Similarly, the difference of the minimum
distortion is given by:

ΔD(θ) = D{T,S|T ′}(θ,∞)−DT+S(θ)

=

j
DT (θ) + DS|T ′(∞)

2

ff
−DT+S(θ). (13)
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By substituting Eqs. (8)–(11) into Eqs. (12) and (13), we obtain:

ΔR(θ) ≥ −
RS|T ′(θ)

2
(14)

ΔD(θ) ≥
DS|T ′(∞)−DS|T ′(θ)

2
. (15)

These equations show the theoretical lower bounds for (i) how much
rate can be reduced, and (ii) how much distortion will be increased,
by the subsampling. To calculate those, we need to know the PSD
function of the prediction residual S|T ′, which is discussed in the
next subsection.

3.2. Modeling of Prediction Residual

To model the prediction residuals between multi-view images, Ra-
manathan and Girod [7] assumed a planar surface geometry with
some probabilistic perturbations, and examined several ways in pre-
dicting an image from other images. Meanwhile, we assume a lay-
ered geometry and adopt a band-limited reconstruction approach that
is based on the plenoptic sampling theory [8]. Our model is more
simple, but can capture the basic characteristic in multi-view images:
the larger interval between the cameras results in the less correlations
between the images.

To accommodate the plenoptic sampling theory to the rate dis-
tortion theory, the spatial frequency should be normalized in the
range of −π to π. Eq. (7) is rewritten as:

Kωs
=

π

β
, for β = max

j
Δs

ΔS
, 1

ff
(16)

where Δs is the cameras’ interval after the subsampling, and ΔS is
the ideal sampling rate given by Eq. (6).

Prediction of S from T ′ can be regarded as interpolation of the
light-field data. In other words, to predict the image set S, the image
set T ′ is regarded as a discrete light-field signal and interpolated with
the reconstruction filter which bandlimits the signal to |ωu| ≤ Kωu

.
According to the plenoptic sampling theory, the frequency compo-
nents below Kωs

can be predicted perfectly. However, we should
consider the errors which result from non-Lambertian reflections,
occlusions, geometry inaccuracy, and the coding distortions in T ′.

Let Φ̂ee(ωu, ωv) be the PSD function for all of those errors summed
up together. Meanwhile, no prediction is performed for the fre-
quency components over Kωs

. Then, the original PSD function of
2-D images, Φ(ωu, ωv), remains as it is in those frequency bands.
To sum up, the PSD function of the residual signal is described as:

ΦS|T ′(ωu, ωv) =

j
Φ̂ee(ωu, ωv) (|ωu| ≤ Kωu

)
Φ(ωu, ωv) (|ωu| > Kωu

)
. (17)

The solid curve in Fig. 2 illustrates the above equation with the
vertical axis in log scale.

In most cases, it seems reasonable to assume that Φ̂ee(ωu, ωv) ≤
Φ(ωu, ωv) would be satisfied as shown in Fig. 2. It can be seen that
the total power of the residual signal increases with a decrease of
Kωu

. In addition, Kωu
is a decreasing function of the cameras’

interval Δs, as shown by Eq. (16). Therefore, the larger interval
between the cameras results in the larger power of the residual sig-
nal, because the more high-frequency components would be unpre-
dictable as the camera interval increases. That agrees with the em-
pirical knowledge in dealing with multi-view images.

The overall procedure for calculating the rate-distortion varia-
tions before and after subsampling is as follows: First, by substi-
tuting Eq. (17) into Eqs. (2) and (3) (replacing Φ(ωu, ωv) with

0 ωuKωu-Kωu

Φ(ωu, ωv)

Φee(ωu, ωv)

Fig. 2. PSD function of the prediction residual.

ΦS|T ′(ωu, ωv)), we calculate RS|T ′(θ), DS|T ′(∞), and DS|T ′(θ).
Then, they are substituted into Eqs. (14) and (15) to obtain the lower
bounds of ΔR(θ) and ΔD(θ).

4. SIMULATIONS

We conducted numerical simulations of our theoretical model with
MATLAB software. In Eq. (1), the correlation coefficient, ρ, was

set to 0.93. The prediction error term, Φ̂ee in Eq. (17), is so compli-
cated due to the non-linearness of the occlusions and the close-loop
prediction, that it would be quite difficult to construct an accurate
model for that. We simply assumed that the error term would be in
proportion to the original PSD function of the 2-D images:

Φ̂ee(ωu, ωv) = αΦ(ωu, ωv). (18)

In the above, α should be chosen according to the complexity of the
scene, the coding distortion of T ′, and the cameras’ interval Δs. In
this paper, we chose 0.05 and 0.01 as examples.

Figure 3 shows the simulation results with (a) α = 0.05 and (b)
α = 0.01. The horizontal axes, ΔR, represent the variation of the
minimum rate (in bits) before and after the subsampling. The vertical
axes, ΔD, represent the variation of the minimum distortion, which
is normalized by the signal power. These graphs show the theoretical
lower bounds of ΔR and ΔD for given θ and β. θ controls the
overall quality of the compression as shown in Eqs. (2) and (3); the
smaller θ yields the higher bit-rate and the smaller distortion, and
vice versa. β denotes the cameras’ interval after the subsampling
by the ratio to the ideal sampling rate, as denoted by Eq. (16). The
graphs tell us whether reducing the number of images to the half
pays or not from the viewpoint of rate-distortion performance.

As can be seen from the level curves for θ, ΔR decreases with
an increase of β, but it bottoms out at a certain level. It can be
explained as follows: When the cameras’ interval Δs is small (β is
also small), there are much inter-image correlations, and the bit-rate
for each image is relatively small. Accordingly, the subsampling has
less effect on the bit-rate compared to the case with a larger Δs.
However, if Δs is large enough, the correlations between images are
little, as indicated by Eqs. (16) and (17). In this case, the bit-rate
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Fig. 3. Simulation results for the RD differences (ΔR and ΔD) with or without subsampling. α represents the magnitude of the prediction
errors between the images. Level curves are drawn for β and θ, where β denotes the interval between the cameras, and θ is a parameter that
controls the compression quality.

for the prediction residual gets close to that of intra-image coding,
which determines the minimum for ΔR.

Meanwhile, from the level curves for β, it is obvious that ΔD
becomes less significant as θ increases. We can explain it as follows:
If θ is large, the information of S are not sufficiently transmitted
even in the case of without subsampling. Consequently, the overall
quality is not largely changed with or without S. Another impor-
tant fact is that ΔD peaks out at a certain level that is determined
by β. As indicated by Eq. (15), the maximum of ΔD is equal to
DS|T ′(∞)/2, and the shape of S|T ′ is determined by the interval
between the cameras as discussed in 3.2.

Comparing the results for (a) α = 0.05 and (b) α = 0.01, we
found that all curves in the graph are being pressed down as α in-

creases. It indicates that the prediction error term, Φ̂ee, has a great
influence on ΔD. This is reasonable because this error term repre-
sents the components in each image that can not be predicted from
other images, so that they never can be reconstructed if the image
itself is discarded by the subsampling.

5. CONCLUSIONS

This paper introduced a new theoretical model on the rate-distortion
performance of multi-view images for analyzing the effect of reduc-
ing images. The rate-distortion theory and the plenoptic sampling
theory were combined to consider the relation between the cameras’
interval and the compression efficiency. Based on the model, the
theoretical lower bounds for (i) how much bit-rate can be reduced,
and (ii) how much distortion will be increased, by the subsampling
of images, has been presented with the numerical simulations. Our
future work will be focused on the validation of our theory with ex-
periments using real image data. In addition, our theoretical model
will be extended to deal with multi-view video coding [3, 4] as well.
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