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ABSTRACT

This paper discusses a system in which multi-view images are cap-
tured and encoded in a distributed fashion and a viewer synthesizes
a novel view from this data. We developed an efficient method for
such system that combines decoding and rendering process to di-
rectly synthesize the novel image without reconstructing all the in-
put images. Our method jointly performs disparity compensation
in decoding process and geometry estimation in rendering process,
because they are essentially equivalent if the camera parameters for
the input images are known. It achieves low-complexity for both
encoder and decoder in distributed multi-view coding system. Ex-
perimental results show superior coding performance of our method
compared to a conventional intra-coding method especially at low
bit rate.

Index Terms— Data compression, Image coding, Rendering
(computer graphics), Stereo vision

1. INTRODUCTION

Camera array systems can capture multi-view images of a 3D scene,
which allow a viewer to observe the scene from arbitrary viewpoints
with image-based rendering techniques [1]. Such systems require
efficient coding schemes owing to the large amount of data, typi-
cally consisting of hundreds of views. Since they capture an identi-
cal scene from slightly different viewpoints, significant correlations
exist among the multi-view images. Most of conventional methods
exploit the correlations at the encoder using the concept of disparity
compensation. However, this requires high encoding complexity and
the communication between cameras with large data volume.

Distributed multi-view coding schemes provide a solution for
such problems [2–5]. In these methods, each image is encoded in-
dependently, but decoded jointly at a central decoder. Since the
inter-camera communication is avoided, low-complexity encoding
and simple system configuration can be achieved. The inter-image
correlation is exploited at the decoder. Therefore, the compression
efficiency is still higher than conventional intra-coding method. In
previous works, however, the decoder seems to pay unnecessary
computational cost when the viewer only observes a novel image;
that is, it first reconstructs input camera images and then synthesizes
the novel image with a general renderer targeting the decoded im-
ages. To our knowledge, there is no approach so far that synthesizes
a novel image directly from the encoded data.

We consider a system in which multi-view images are captured
and encoded in a distributed fashion, and a remote viewer synthe-
sizes a novel image at a desired viewpoint using this data. We pro-
pose an efficient method that combines decoding and rendering pro-
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Fig. 1. A typical structure of distributed multi-view coding system.

cess so that the novel image can be directly synthesized without re-
constructing all the input images. This rendering-oriented decoding
method jointly performs two key techniques: disparity compensation
in decoding process and geometry estimation in rendering process,
since they are essentially equivalent if the camera parameters for the
multi-view images are known. When the viewer only synthesizes a
novel image, our method requires low computational cost compared
to the typical method that performs above two processes separately.
Our method achieves low-complexity for both encoder and decoder
as a conventional intra-coding method, while shows better coding
performance due to the inter-image decoding.

2. BACKGROUND

2.1. Distributed Multi-View Coding

Figure 1 shows a typical structure of distributed multi-view coding.
The images are classified into two categories: key images (K) and
Wyner-Ziv images (W). The key images are encoded and decoded in-
dependently with a conventional intra-image coder. The Wyner-Ziv
images are encoded independently with a channel coder, and their
parity bits are transmitted to the decoder. To decode the Wyner-Ziv
image, its estimate called side information (Y) is generated through
disparity compensated prediction using the previously decoded key
images, and the prediction error is corrected using the parity bits of
the image.

The coding efficiency of the above method greatly depends on
the accuracy of the side information, because only a few parity bits
are needed to correct small prediction error. If the scene geometry
is available, accurate side information can be generated by warping
the neighboring views [3]. For multi-view video sequences, mo-
tion compensated prediction can be combined with disparity com-
pensated one to improve the quality of side information [4, 5].
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Fig. 2. Depth estimation method for synthesizing a desired view.

2.2. Rendering with Multi-View Images

Suppose that multi-view images are captured with many cameras
that roughly lie on a plane and are arranged in a 2D grid, and that
there is no prior knowledge of the scene geometry. To synthesize a
novel image from this data, geometry estimation is widely adopted
to compensate for the lack of cameras and interpolate the data ap-
propriately [6,7]. Here we consider an on-the-fly estimation method
of the depth map depending on the desired viewpoint.

As shown in Fig. 2, a layered depth model, zn(n = 1, 2, .., N),
is assumed in the object space. We estimate the depth for each tar-
get light ray, r(u), where u represents the position of the light ray
in the desired view. At the intersection of the target light ray with
each of depth layers (pn(u)), we evaluate the similarity (color con-
sistency [6] or focus measure [7]) of the reference light rays, which
correspond to the back-projections of the intersection point to the in-
put cameras and are denoted by rn

i (u), where i is a camera index.
To prevent the occlusion effect and keep computational cost low,
this similarity evaluation is often performed using only the k-nearest
cameras [6–8]; therefore its cost function is given by

J(pn(u)) = similarity (I(rn
i (u)|i∈V )), (1)

where V is the set of camera indices near the target light ray, and
I(·) denotes the color of the light ray. In our implementation, |V | =
k = 4 as shown in Fig. 2. For reducing the noise effect, this cost
function is smoothed in each depth layer. Finally, the depth of each
target light ray is selected by

n(u) = arg min
n

J(pn(u)), (2)

and its color is given by the average color of the reference light rays

I (r(u)) = average (I(r
n(u)
i (u)|i∈V )). (3)

3. RENDERING-ORIENTED DECODING

The rendering method described above can be used if all images (to
be more accurate, image segments [9]) needed to synthesize the de-
sired view are reconstructed and available; therefore, as shown in
Fig. 3(a), typical methods first reconstruct the multi-view images
with the decoding method described in Section 2.1. However, they
seem to pay unnecessary computational cost, since disparity com-
pensation in decoding process and geometry estimation in rendering
process are essentially equivalent if the camera parameters for the
multi-view images are known.

(a) Typical method (b) Our method
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Fig. 3. Process flow for synthesizing a free-viewpoint image. (DC:
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To synthesize a desired view directly, we propose rendering-
oriented decoding method, in which the decoding of the Wyner-
Ziv images is incorporated into the rendering process, as shown in
Fig. 3(b). The Wyner-Ziv images are therefore not reconstructed ex-
plicitly. Our method uses a simple coset code for the Wyner-Ziv
images. It achieves low-complexity for both encoder and decoder as
a conventional intra-coding method.

3.1. Rendering Algorithm with Coset Codes

The input multi-view images are divided into key images and Wyner-
Ziv images. At the encoder, the key images are encoded using a con-
ventional intra-image coder. For the Wyner-Ziv images, the pixel
value is represented by M cosets, Cm(m = 1, 2, .., M), in a mem-
oryless fashion [10].

At the decoder, we first reconstruct the key images and coset
indices for the Wyner-Ziv images. The side information for each
target light ray and each depth layer, Y n(u), is then calculated by
averaging the color of the reference light rays in key images

Y n(u) = average (I(rn
i (u)|i∈VK )), (4)

where VK is the set of camera indices for the key images in V . Using
this side information, we reconstruct the reference light rays of near
Wyner-Ziv images in a maximum likelihood sense by

Î(rn
i (u)|i∈VW ) = arg min

cj∈Cm

(cj − Y n(u))2, (5)

where VW is the set of camera indices for the Wyner-Ziv images in
V , and cj is a codeword in the coset Cm for the light ray rn

i (u)|i∈VW .
We then evaluate the similarity of the reference light rays by Eq. (1)
and estimate the depth and color for each target light ray by Eqs. (2)
and (3). Since the extra computational cost for Eqs. (4) and (5) is
not too large, we can keep the complexity of this rendering method
as low as that of the original one described in Section 2.2.

3.2. Implementation

Figure 4 shows the implementation diagram of our proposed method.
The key images are encoded with discrete wavelet transform (DWT)
and SPIHT [11], implemented in QccPack [12], for each RGB com-
ponent. For the Wyner-Ziv images, we first map each RGB value of
the pixel to a coset by the function shown in Fig. 5 [13]. The coset
indices are then encoded with the DWT and SPIHT as well as the
key images. Since we use the lossy coder for the coset indices, we
choose the mapping function shown in Fig. 5, instead of the regular
modulo M function, to prevent drastic changes in codewords with a
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small error of the coset index. At the decoder, we decode the SPIHT
and perform the rendering-oriented decoding with the decoded key
images and coset indices of the Wyner-Ziv images.

In generation of the side information for the Wyner-Ziv images,
smooth regions can be easily predicted, while edge regions are dif-
ficult due to the occlusion. In other words, the predicted color by
Eq. (4) is enough accurate in the smooth regions, while it includes
large error in the edge regions [5]. Therefore, we also implemented a
simple edge detector for the Wyner-Ziv images to improve the com-
pression efficiency. The variance of image segment of 16× 16 pixels
is evaluated to extract the edge regions. Figure 6 shows the extracted
edge regions in our experiments. To encode only the edge regions,
we use shape adaptive SPIHT [12] with the mask image for the edge
regions. The smooth regions have no information in this implemen-
tation. Hence, the correction procedure by Eqs. (4) and (5) is per-
formed only for the edge regions.

4. EXPERIMENTS

The complexity of our method is almost as low as that of the method
encoding all images as the key images and synthesizing a novel im-
age with the normal renderer described in Section 2.2, which is re-
ferred as all key method. We therefore compared the coding per-
formance of them in this experiment, to show the advantage of our
method.

We used the Doll image set provided by courtesy of University
of Tsukuba, Japan, as shown in Fig. 6. This data set consists of 81
(9 × 9) still images of 640 × 480 pixels, which are captured with
cameras arranged in a regular 2D grid on a plane. We divided these
images into 41 key images, which are referred as base-K images
hereafter, and 40 Wyner-Ziv images as shown in Fig. 1; therefore
|VK | = |VW | = 2 for all target light rays. The color variance of the
reference light rays was used for the similarity evaluation in Eq. (1).

Figure 7 shows the rate-distortion performance of our method ei-
ther with or without the edge detector, compared to that of the all key
method. We fixed the bit rate of the base-K images to 0.3 bpp and
0.9 bpp, where the average quality of them was 34.04 dB and 40.98
dB as peak signal-to-noise ratio (PSNR), for Figs. 7(a) and (b), re-
spectively. The bit rate of the other images (Wyner-Ziv images for

Fig. 6. Extracted edge regions in an input image of the Doll data set.

our method and key images for the all key method) was controlled by
truncating the SPIHT bitstream and expressed on the horizontal axis.
The plots show the reconstruction quality of synthesized images av-
eraged for random 10 viewpoints, where the quality is calculated
with respect to the image synthesized from the uncompressed data
and expressed as PSNR. The bit rate of edge information is included
in the plot of our method using it.

As it can be seen from the plots, our proposed method shows
superior performance especially at low bit rate. Smaller M yields
better performance at low bit rate, because small error in the smooth
regions can be corrected by the coset code with small M , but it re-
stricts the maximum quality which is important at high bit rate. Since
we do not use feedback channel to control the rate for the Wyner-Ziv
images [3, 4], it is still a difficult problem to decide proper M at the
encoder for efficient rate control. The edge information provides ad-
ditional gain for our method at low bit rate, since the edge regions
include larger error than the smooth regions.

Figure 8 shows the reconstructed synthesized images using the
all key method and our method with edge information. The bit rate
of base-K images is 0.3 bpp and that of the other images is 0.15 bpp.
For the all key method, it can be observed that the edge regions have
large error as shown in Fig. 8(a). Our method with edge information
decreases the error in the edge regions as shown in Fig. 8(b).

5. CONCLUSIONS

In this paper, we proposed the rendering-oriented decoding method
for distributed multi-view coding system. Our method directly syn-
thesizes a novel image without reconstructing the Wyner-Ziv im-
ages explicitly, by incorporating the reconstruction of light rays in
the Wyner-Ziv images into the rendering process. It achieves both
low-complexity encoder and decoder as a conventional intra-coding
method, while shows better coding performance especially at low
bit rate. Future work will be focused on investigating an estimation
method for determining appropriate number of cosets at the encoder,
and extending this method to multi-view video sequences.
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Fig. 8. Synthesized images and their difference from that using un-
compressed data (multiplied by 8).
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