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ABSTRACT 
 
Calibrating the relative geometry between cameras which 
would move against one another from time to time is an 
important problem in multi-camera system. Most of the 
existing calibration technologies are based on the cross-
camera feature correspondences.  This paper presents a new 
solution method. The method demands image data captured 
under a rigid motion of the camera pair, but unlike the 
existing motion correspondence-based calibration methods, 
it does not estimate optical flows nor motion 
correspondences explicitly.  Instead it estimates the inter-
camera geometry from the observations that are directly 
available from the two image streams – the monocular 
normal flows.   Experimental results on real image data are 
shown to illustrate the feasibility of the solution. 
Index Terms—Camera calibration, Extrinsic camera 
parameters, Active Vision
 

1. INTRODUCTION 

Active vision system that allows each camera in a multitude 
of cameras to move independently of the others has the 
advantage that the visual coverage of the entire system 
could be re-shaped dynamically according to the need. An 
important problem in active vision is about calibrating the 
binocular geometry of any two cameras. 
   Many methods have been proposed on the subject. Some 
require certain specific objects appearing in the scene [4]. 
Such methods often constitute simpler solution mechanisms, 
but they are restricted to certain applications. There are 
methods that do not require the presence of calibration 
objects but the accessibility of cross-camera feature 
correspondences [3][6]. However, cross-camera 
correspondences require the cameras to have much in 
common in what they picture. In active vision, the visual 
fields of the cameras, due to their freely-moving nature, 
could have nothing in common.   

A natural approach of tackling the problem is to conduct 
a rigid motion of the two cameras, establish motion 
correspondences in the respective image streams, estimate 

the camera motions A and B of the two cameras from the 
respective sets of motion correspondences, and recover the 
inter-camera geometry X from the composite transformation 
relation AX=XB (e.g., in [1]). However, establishing 
motion correspondences (i.e., full optical flow) is an ill-
posed task due to the aperture problem, and requires the 
adoption of heuristics like scene- or flow- smoothness 
which usually are not applicable to everywhere in the scene. 

This paper describes a new method of determining the 
relative geometry of two cameras.  Different from all the 
methods mentioned above, the method does not assume 
presence of calibration objects or specific features in the 
imaged scene, nor does it impose restriction on the viewing 
directions of the cameras, thus allowing the visual fields of 
the cameras to have little or zero overlap. The estimation 
starts from the visual motion data acquired under a rigid 
motion of the cameras, and it estimates the inter-camera 
geometry from the observations that are directly available in 
the two image streams – the normal flows. 

We assume that the intrinsic parameters of the cameras 
have been estimated by self-calibration methods like[5][6].
The focus of this work is the estimation of the camera-to-
camera geometry.  

2. FIELD MODELS USED FOR IMAGE DOMAIN 

Fermüller and Aloimonos [2] proposed a few field 
descriptions of the image domain that is with regard to any 
chosen axial direction that passes through the optical center 
of the camera.  The fields allow a camera’s ego-motion to 
be estimated directly from normal optical flows.  In this 
work we adopt the same field models to determine binocular 
geometry instead.   

For any chosen axis s= [A B C] that passes through the 
optical center, on the image plane we can draw a series of 
conic sections generated by a family of cones centered at 
axis s. The s-coaxis vector field direction at each image 
position is the one that is perpendicular to the tangent of the 
conic section at that image point: 

[Mx,My]=[(-A(y2+f2)+Bxy+Cxf),(Axy-B(x2+f2)+Cyf)]  (2.1) 
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where [Mx, My] is the field vector assigned to image point [x, 
y] and f is the focal length of the camera.  

Suppose a camera undergoes a pure translation. For any 
particular choice of the s-axis, we have an s-coaxis field 
direction (Equation 2.1) at each image position.  At any 
image position, the dot product between this field direction 
and the optical flow there allows the image position be 
labeled as either: ‘+’ if the dot product is positive, or ‘-‘ if 
negative.  By the distributions of the ‘+’ and ‘-’ labels, the 
image plane is divided into two regions:  positive and 
negative, with the boundary being a 2nd order curve called 
the zero-boundary, as illustrated by Fig.1(a). This 2nd order 
curve is a function of the focus of expansion (FOE) of the 
optical flow, which precisely describes the translational 
direction of the camera. Fig.1(b) illustrates the positive-
negative pattern generated in the same way when the 
camera takes a pure rotation. Different from the pattern 
Fig.1(a), the zero-boundary is now a straight line, which 
depends only on the ratios /  and /  where =[   ] is 
the rotation.  

If the camera motion has both translation and rotation, the 
positive-negative pattern of the image space is  the addition 
of the two patterns Fig.1(a) and Fig.1(b) in this manner:  
Positive+Positive=Positive, Negative+Negative= Negative, 
and Positve+Negative=Don’t know (this zone depends on 
the structure of the scene), as illustrated by Fig. 1(c).  

(a)                             (b)                                (c) 
Fig.1 s-coaxis positive-negative patterns. (a) Camera undergoes pure 
translations. (b) Camera undergoes pure rotations. (c) Camera takes 
an arbitrary motion (including translation and rotation). 
The difficulty is, only normal flows, the local gradients of 

the intensity information in the captured image sequences, 
can be computed directly. Fortunately, for any given s-axis, 
the positive-negative pattern can still be generated from the 
normal flows at least some image positions [2].  

3. BINOCULAR GEOMETRY ESTIMATION 
 

Suppose the cameras in our vision system move 
independently to track the object of interest, which results in 
a time-varying relative geometry of the cameras.  At any 
instant that the relative geometry of the cameras is needed, 
the cameras can have their binocular geometry frozen to  
conduct a rigid motion of the camera pair, so as to collect 
two image streams for estimating the binocular geometry 
(Rx, tx,).  Here we use (RA, tA,) and (RB,tB) to represent the 
motions of camera A and camera B respectively. The 

composite transformation relation AX=XB mentioned 
previously could be broken into: 

BxxA RRRR                            (3.1) 

(or  BxA R  in vector form)  
       

ABxxA ttRtIR )(                     (3.2) 
where Rx, RA, RB are the rotational components in X, A, B;
tx, tA, tB are the translational vectors; and A and B are the 
rotational components of camera A and B in vector form.  

Inspired by Fermüller and Aloimonos’ work [2], we see 
the problem in the following light. Since the zero-
boundaries (Fig.1) on the positive-negative patterns that 
carry information of the camera motions are what can be 
obtained directly from the image sequences without using 
any artificial constraints, we can estimate the binocular 
geometry by locating the zero-boundaries. Even so, locating 
zero-boundaries precisely is a great challenge. First of all, 
for any arbitrarily given s-axis, only a few image points, 
where their normal flows are exactly along the direction of 
the s-coaxis vector field, would be valid candidates and 
taken into account to generate the positive-negative pattern. 
Consequently sparse ‘+’ and ‘-’ candidates of the pattern 
causes the great difficulty in precisely locating the zero-
boundaries. Furthermore, two “Don’t know” regions 
appearing in the pattern Fig.1(c) result in more uncertainties 
in estimating zero-boundaries, when camera takes an 
arbitrary motion.  

Aiming at the above two major problems, we propose our 
strategies. First, we apply more s-axes to make use of as 
many normal flows as possible to improve the precision of 
locating zero-boundaries. Also we hope to avoid dealing 
with patterns having “Don’t know” regions. We try to 
obtain some simpler patterns (Fig.1 (a)&(b) ) by applying 
specific motions to simplify the pattern analysis, 

3.1. Estimation of Rx 

We let the camera pair undergo a specific rigid motion – a 
pure translation – so as to reduce the complexity in locating 
the zero-boundaries in the positive-negative patterns of the 
two image domains.   

With rigid pure translation of the camera pair, the motion 
of each camera is also a pure translation.  With this, for any 
arbitrarily chosen s-coaxis field, each camera will have in its 
image domain the positive-negative pattern like Fig. 1(a).  
The positive and negative regions are separated by a second 
order curve, and there is no “Don’t know” area. The 
localization of the zero-boundary and in turn the 
determination of the direction At

~  or Bt
~  (unit vectors  

representing the respective FOEs of the two cameras) 
becomes trivial, as long as enough s-axes are used.   

From (3.2) we have: 

Negative Positive Don’t know 
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BxA tRt ~~                                (3.3) 
Then the rotational component Rx of the binocular geometry 
can be determined as: 

t

tt

tx V
VU

UR
)det(00

010
001                     (3.4)                                             

where 
N

BAt
1

T~~ ttK ,and Kt =Ut St Vt by SVD (singular 

value decomposition). N represents the number of pure 
translations in different directions. It can be proved that two 
rigid pure translations (in different directions) are the 
minimum to obtain a unique solution i.e., min (N) =2.  

3.2. Estimation of tx up to Scale 

Similar to the previous step of estimating the rotational 
component Rx, we apply pure rigid rotations this time to the 
camera pair to compute the baseline tx of the binocular 
geometry. However, only tx up to arbitrary scale is to be 
obtained, unless certain metric measurement of the 3D 
world is available.  

Suppose the camera pair has a pure rotation about an axis 
passing through the optical center of one camera, say the 
optical center of camera A.  Then camera A undergoes only 
a pure rotation, while camera B rotates about an axis 
passing through the optical center of camera A, and at the 
same time translates along the direction tangential to the 
baseline. In this case Equation (3.2) can be rewritten as: 

BxxA tRtIR )(                          (3.5) 
where rank(RA- I)=2, since it has a nonzero nullspace. We 
then rewrite (3.5) to a homogeneous system: 

0tA x
~                                    (3.6) 

where A , calculated from Rx, RA and tB,, is a 2×3 matrix 
with rank( A )=1.  tx here is the normalized vector 
representing the direction of the baseline. Obviously two 
rotations are the minimum to obtain a unique tx, and it can 
be achieved by applying SVD to quation (3.6). 

Camera A has a simple positive-negative pattern without 
the “Don’t know” area (like Fig. 1 (b)), in which the 
positive and negative patterns are divided simply by a 
straight line. We use the vector A=[ A A A] to describe the 
rotation of camera A.  The ratios A / A and A / A can be 
recovered from locating the straight zero-boundary. The 
third component A have to be estimated by using the 
method named “detranslation” that is presented in [2].   

For camera B, the positive-negative pattern (Fig.1(c)) 
generated from the normal flows is more complex, because 
it contains two “Don’t know” areas. However, the rotational 
component B of camera B can be computed directly from 
Equation (3.1), with knowledge of Rx determined in the 

previous step. When applying the s-coaxis vector field, the 
two straight zero-boundaries on the positive-negative 
pattern are determinable from B.  As a result, the other 2nd

order zero-boundary defined by FOE can be located, despite 
the presence of the two “Don’t know” regions. The 
direction tB of the translational component is determined 
during locating the 2nd order boundary. Finally, tx (up to 
arbitrary scale) can be calculated from (3.6) once RA and  tB
are both computed from the positive-negative patterns. 

4 .EXPERIMENTAL RESULTS 

We have implemented the proposed method and tested it 
with both synthetic and real image data to investigate the 
performance.  

4.1. Experimental Results on Synthetic Data 

The experiments on synthetic data aim at investigating the 
accuracy and precision of the algorithm, because there is 
always ground truth to compare the experimental results 
with. Normal flows are the only input to our algorithm, just 
like in the case of real image experiments. We used image 
resolution of 101×101 in the synthetic data.   

4.1.1. Estimation of Rx  
    The normal flows are generated by assigning to each 
image point an arbitrary intensity gradient direction.  Dot 
product between the gradient direction and the optical flow 
incurred from the assumed camera motion determines the 
normal flow precisely.   

Below we show how we locate the zero-boundary. Given 
the first s-axis, for instance s=[1 0 0], from the normal flows 
in the image frame, we got the first positive-negative pattern. 
We assumd the FOE to be somewhere in the image domain 
for simplicity.  After investigating the pseudo FOEs 0.25 by 
0.25 pixel, more than 1000 2nd order curves, determined 
from different pseudo FOEs, could well divide the pattern 
into two regions. Then we applied a second s-axis to 
examine if those pseudo FOEs that had good performance in 
the first pattern still perform well in this new pattern. We 
kept those that still had good performance in the next round 
under a new s-axis. We repeated this process, until all 
possible FOEs were located within a small area. Then the 
center of these possible FOEs was considered as the input 
for computing Rx using Equation (3.4). Experiments showed 
that the number of possible FOEs dramatically decreases as 
more s-axes were utilized. 

We estimated the FOEs by locating the zero-boundaries 
for both camera A and B first, and the rotational component 

x of the binocular geometry was then estimated. The 
calculation result is shown in the Tab.1. The error is 0.7964o

in direction, 1.2621% in length. 
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4.1.2. Estimation of tx up to Arbitrary Scale 
We assumed that the camera pair were rotated about an 

axis passing the optical center of camera A at two different 
given velocities. As above, the normal flows were generated 
to be the inputs. We located the zero boundaries on the 
positive-negative patters to estimate rotations A of camera 
A, using the algorithm named detranslation” [2]. FOE of 
camera B Bt

~  was obtained readily from the patterns. Finally 
we obtained tx up to arbitrary scale using Equation (3.6).The 
result, shown in Tab.1, is a unit vector describing the 
direction of the baseline. The angle between the ground 
truth and the result is 2.0907o.

TABLE  1. ESTIMATION OF x AND xt  UP TO SCALE

Ground Truth Experiment
x [0.100  0.100 -0.200]T [ 0.097  0.204  -0.203] T

tx [-700  20  80]T [-0.988  0.043  0.147] T

In this experiment, synthetic normal flows, computed 
from full optical flows by allocating to each pixel a random 
gradient direction, are more general than those calculated 
from the image sequences, because there is no assumption 
on the characteristics of the captured scene.  The precision 
of the results well demonstrates the accuracy. 

4.2. Experimental Results on Real Image Data 

Here we only show results on the recovery of Rx ( x) due to 
limitation of page space.  We moved the camera pair on a 
translational platform. Resolution of the image sequences is 
640×480. We do not have any reference object in the scene. 
Moreover, there are almost no overlap in the two cameras’ 
visual fields except a small portion of the background. Also 
there are a lot of occlusions and depth discontinuities. 
Estimating the binocular geometry of the cameras from such 
image data is an impossible task to the correspondence-
based methods, and a difficult task to the motion 
correspondence-based methods. 

We examined pseudo FOEs pixel by pixel in the image 
frames. No more than 132 s-axes were needed to precisely 
locate the locations of the possible FOEs. The zero-
boundaries determined by the FOEs are shown in Fig 2. 

 (a)                             (b)   

                           (c)                          (d) 

Fig 2. The zero-boundaries (blue curves) determined by estimated 
FOEs. Green dots represent negative candidates; red dots represent 
positive candidates. (a) Camera A, Motion 1, s=[0 1 0]; (b) Camera B, 
Motion 1, s=[1 0 0] ; (c) Camera A, Motion 2, s=[0 1 0]; (d) Camera B, 
Motion 2, s=[ 1 0 0]. 
As there is no ground truth available on the extrinsic 

parameters of the camera pair, we compare the results with 
those from a second independent experiment so as to 
examine the consistency of the solution.   The binocular 
geometry was kept the same in the two experiments.  
Results of x in two individual experiments are shown in 
Tab.2.  

TABLE 2. ESTIMATION OF THE ROTATIONAL COMPONENT x OF THE 

BINOCULAR GEOMETRY

Experiment 1 Experiment 2 
[0.1066  -0.1328  -3.0878] T [0.0879  -0.3425  -3.2002] T

We compared the two rotational vectors and calculated 
the error, which is 12.72% in length and 3.6675o in direction. 

5. CONCLUSION AND FUTURE WORK 

We have presented a method of determining the binocular 
geometry directly from monocular normal flows, which 
requires neither cross-camera correspondences nor full 
optical flow estimation. Our future work is to relax the 
requirement of the specific stereo-rig motions. 
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