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ABSTRACT

Some recent stereo matching algorithms are based on graph
cuts. They transform the matching problem to a minimisation
of a global energy function. The minimisation can be done by
finding out an optimal cut in a special graph. Different meth-
ods were proposed to construct the graph. But all of them,
consider for each pixel, all possible disparities between min-
imum and maximum values. In this article, a new method is
proposed: only some potential values in the disparity range
are selected for each pixel. These values can be found using
a local analysis of stereo matching. This method allows us to
make wider the disparity range, and at the same time to limit
the volume of the graph, and therefore to reduce the compu-
tation time.

Index Terms— Stereo vision, matching, graph cut

1. STEREO VISION

Binocular stereo vision use two images taken by two cameras.
A preliminary phase of calibration is needed to estimate the
different parameters of a stereo rig: the parameters of pro-
jection of each camera (for a pin hole geometric model) and
the spatial relationship between the two cameras. This knowl-
edge allows us to calculate the 3D coordinates of a point from
its projections in the two images by a simple triangulation.

Stereo matching is the problem of finding in the left and
right images the homologous primitives, i.e. the primitives
which are the projections of the same entity in the scene. A
stereo matching is a minimisation problem, either for many
energy functions representing the local costs of each match-
ing supposed independent of the others, or for a unique global
energy function, representing the global cost of matching be-
tween the primitives of the images. Chambon [1] develop in
her thesis a well detailed state of the art of stereo correspon-
dence. A recent taxonomy of algorithms of stereo correspon-
dence is written by Scharstein and Szeliski [2]. The authors
of this taxonomy differentiate four elements in the methods
of stereo matching: (i) The local cost of matching, (ii) The
aggregation area while calculation the local cost, (iii) The op-
timisation method, (iv) Refinement of results.

The method developed at LAAS since 1995 [3] is a mod-
ified algorithm described by Faugeras [4]. This method is

adopted for robotic applications, especially for the real time
constraint. It can be classified under local methods, because
there is not an optimisation phase. We try to adapt a global
method of optimisation as second layer around our algorithm,
to gain the advantages of the global minimisation while re-
maining within the real time constraint.

In the next section, we will resume related works on using
graph cuts for stereo correspondence, then in section 3 we will
detail the construction of the graph in order to put in evidence
our contribution concerning its reduction, and in section 4, we
focus on our implementation and experimental results before
concluding.

2. STEREO CORRESPONDENCE AND GRAPH
CUTS

The first global method based on graph cuts for stereo corre-
spondence was introduced by Roy [5]. Stating from the 1D
formulation of the order constraint used by the dynamic pro-
gramming applied separately to each image line, Roy tried
to find a more general 2D formulation for this constraint to
be applied to all lines together. He proposed a local coher-
ence constraint which suggests that the disparity function is
locally smooth, which means that the neighbour pixels in all
directions have similar disparities. He claims that the advan-
tages of this constraint is that it can link not only neighbour
pixels of one epipolar line but between lines. Roy applied this
constraint of local coherence by defining a disparity matching
cost which depends on the variation of intensities of matched
pixels. In the case of two cameras, the matching cost is the
squared difference of the intensities.

The next step in the method proposed by Roy is to resolve
the optimal disparity map over all the image. This can be
visualised as a 3D mesh composed of planes which are com-
posed of image of nodes. There is a plane for each level of
disparity, and each node represents a matching between two
pixels in the original images.

The 3D mesh is then transformed into a graph of maxi-
mal flow by connecting each node to its four neighbours in
the same plane by edges called occlusion edge, and with the
two nodes in the neighbour planes with edges called disparity
edges. Edges are not oriented. We add two special nodes: a
source connected to all nodes in the plane of minimum dis-
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parity, and a sink connected to all nodes in the plane of maxi-
mum disparity. The weight of a disparity edge is equal to the
mean value of matching costs of the two nodes. For occlu-
sion edges, the weight is multiplied by a constant to control
the smoothness of the optimal disparity map. A graph cut will
separate the nodes in two sub-sets: the optimal disparity map
is constructed by the assignment of each pixel with the most
bigger value of disparity for which the corresponding node is
still connected to the source.

Ishikawa and Geiger [6] pointed out that the method of
Roy can deal only with convex maps. Thereby, it can only
take into account linear penalties on disparity, which may lead
to mediocre results due to over smoothing of disparities. They
proposed a novel graph with oriented edges, then it is possi-
ble to reinforce the constraint of uniqueness and order. But,
their method is also weak at discontinuities because of linear
penalties.
Sub-optimal optimisation algorithms: Boykov, Veksler

and Zabih [7] proposed another method to resolve the stereo
corresponding using graph cuts. The authors showed that
the problem of stereo corresponding can be formulated by a
Markov Random Field (MRF). They showed that the estimate
MAP (Maximum A Priori) of such MRF, can be obtained by
a minimal multiway cut, using a maximum flow. The advan-
tages of such a method is that it accepts non linear penal-
ties of discontinuity, and then it gives more precise disparity
maps especially near objects’ edges. As the general problem
of minimal multiway cut is NP-complete (see Dahlhaus et al.
[8]), Boylov et al. decided to introduce an approximated algo-
rithm, which can resolve iteratively some sub-problems until
convergence.

This approach has a wider application spectrum than the
one proposed by Roy or by Ishikawa and Geiger. But, it is
iterative and sub-optimal, then its convergence speed and the
quality of the obtained minimum must be supervised.

3. GRAPH CONSTRUCTION

A graph is a set of sites (called also node or vertex) connected
by edges. In a weighted graph, each edge has a weight (capac-
ity). Roy [5] used the graph cuts to determine the minimum
of global energy function. Veksler [9] reformulated the prob-
lem as a Labelling Problem. In such a problem, we have a set
of sites and a set of labels. The sites represent the features of
the image (pixels, segments...), for which we want to estimate
some quantity. The labels represent the quantities associated
to these sites: intensity, disparity. . . Let P = 1, 2, . . . , n be a
set of n sites, and L = {l1, ..., lk} be a set of k labels. La-
belling is defined by a map from P into L:

f : P → L : sp �→ fp = f(sp) = li (1)

We assign an energy function to the labelling map, here is a
General form of energy function:

E(f) = Edata(f) + λ.Eprior(f) (2)

Our description of the graph will be base on this formulation.
First we will explain the construction of a full graph, and then
we explain our contribution in reducing its size to accelerate
the algorithm.

3.1. Cut in a Full Graph

Let us consider a linear potential map:

V{p,q}(fp, fq) = u{p,q}|fp − fq| (3)

We will construct a graph to minimise the global energy:

E(f) =
∑

p∈P

Dp(fp) + λ
∑

{p,q}∈N

u{p,q}|fp − fq| (4)

whereNp is the set of neighbour pixels of the pixel p, N is the
set of neighbour pairs {p, q}, and Dp is the cost of matching
of the pixel p with the corresponding value of disparity.

Let us define a graph G = (V, E), in which V has two
particular sites: a source s and a sink t. Let k be the number
of possible matches (given by the disparity range). For each
pixel p we assign a chain of nodes p1, p2, ..., pk−1. These
nodes are connected by edges called t-link and noted tp

1
, tp

2
, ...,

tpk where tp
1

= [s, p1], tpj = [pj−1, pj ] and tpk = [pk−1, t].
For each t-link, we assign a capacity Kp + Dp(lj), where Kp

is a constant satisfies the constraint (eq:5). For each pair of
neighbour pixels p and q, the corresponding chains are related
by edges called n-link, at levels j ∈ {1, 2, . . . , k − 1}: the n-
link {pj , qj} has a capacity u{p,q}.

Kp > (k − 1)
∑

q∈Np

u{p,q} (5)

The capacity of an s− t cut of the graph is the sum of capaci-
ties of all cut edges. Depending on the method of constructing
the graph, the cut capacity is composed of two parts: the first
is the sum of capacities of the cut t-link edges, and the sec-
ond is the sum of capacities of cut n-link edges. In fact, the
constant Kp allows us to assure the uniqueness of cut of each
t-link chain, see [5] for a proof.

A graph cut consists in dividing the graph into two parts.
The cut t-link edges form the surface of searched depth. The
problem of graph cut can be solved using the maximum flow.
Ford and Fulkerson [10] showed that the maximum flow from
the source s to the sink t saturates a set of edges dividing the
set of nodes in two parts S and T . The major problem of such
method for robotic applications, is its huge execution time.

3.2. Cut of a Reduced Graph

To overcome the problem of execution time, we propose to
construct a reduced graph: for each pixel we keep only some
potential disparity values, resulting from a local method of
stereo matching.
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By mean of a local matching method (based on local sim-
ilarity measurement, as SAD for example), we calculate for
each left pixel p the costs of matching for all possible val-
ues in the disparity range [dmin, dmax]. Then, we choose the
N best values (for illustration purposes, we choose N = 4
without lack of generality). The choice may be done accord-
ing to different criteria, for example, with a classic ZNCC
score, we keep the disparity values around the peak, or the
N best local maxima (if they exist). . . We will note our se-
lected disparities for the pixel p as d1,p, d2,p, . . . , dN,p, and
the costs of matching as D{p,d1,p}, D{p,d2,p}, . . . , D{p,dN,p}.
To reduce the size of the graph, for each chain (t-link), we
remove all the nodes and edges except N − 1 nodes (and
N edges). Thus for each pixel p we construct a novel chain
of nodes {pL1

, pL2
, . . . , pLN−1

}. These nodes are connected
by edges (t-link) noted {tp

1
, tp

2
, . . . , tpN} with tp

1
= [s, pL1

],
tp
2

= [pL1
, pL2

], . . . , tpN = [pLN−1
, t]. The capacity of the

t-link edge i is C + D{p,di,p}, where C is a constant satisfing
the constraint (eq:6).

C > N ∗ max
{p,q}∈N

(u{p,q}) ∗ |dmax − dmin| (6)

For each adjacent pixels p and q, the corresponding chains are
related by edges (n-link) at the (N −1) levels, with a capacity
as in equation (7). The figure 1 illustrates a front projection
of the graph.

Capacity of n-link at level i = u{p,q} ∗ (|di,p−di,q|+1) (7)

Minimised Energy in Reduced Graph: The global energy
(eq:4) has two terms. The first term represents the intrinsic
data energy, which translates the constraints of associating la-
bels to the data. The second term aggregates the extrinsic en-
ergies (prior energy) which translate the constraints defined
by the prior information. The constant λ can control the rel-
ative importance of the two terms. Hence, The prior energy
appears in the weights associated to the n-link edges in the
graph. In the reduced graph, we do distinguish between two
types of prior information, the first translates the information
acquired by the local method and acts in the choice of nodes,
while the second (smoothing) interferes in the penalties as-
sociated to the n-link edges. Thereby, we exploit the prior
knowledge that the disparity of a pixel p has only N possible
values (the most probable) in a new way. In fact, we consider
that removing non potential nodes as a novel form of repre-
senting this prior knowledge.

4. IMPLEMENTATION, EXPERIMENTAL RESULTS

We find in the literature two approaches to solve the maxi-
mum flow [11]. The first is the algorithm of augmented path
due to Ford and Fulkerson, and the second is preflow-push.
We choose an implementation of the later called push re-
label, proposed by Goldberg [12], included in Boost Graph

Full Graph t−linkSourceReduced Graph t−link

SinkFull Graph n−link Reduced Graph n−link

Fig. 1. Reduced Graph construction.

Library 1. Note that Boykov and Kolmogorov [13] have pro-
posed a new algorithm, and they showed that on typical graphs
for computer vision applications, their algorithm is 2 to 5
times more faster than the other algorithms.

To illustrate the importance of our method of reduced gra-
ph, let W and H be the width and height of the image,
[0, dmax] be the disparity range, and N the number of best
candidates given by the local matching method. Let v be the
number of nodes and e be the number of edges. In the orig-
inal graph, we have: v = WH(dmax − 1) + 2, e � 6v =
6WH(dmax−1). The theoretical complexity of push-relabel
is O(ve log(v2/e)) [11]. In the case of full graph, the com-
plexity is O(W 2H2d2

max log(WHdmax)), while with the re-
duced graph, it becomes O(W 2H2N2 log(WHN)). We no-
tice clearly that when N � dmax, our algorithm needs less
memory and it is more faster. As an example, for W =
H = 512, dmax = 32 and N = 4, in the full graph there
are v � 8e6 nodes and e � 50e6 edges, whereas in the re-
duced graph has only v � 1e6 nodes and e � 6e6 edges.
We notice that the full graph can not be manipulated on nor-
mal machines (with ordinary memory), whereas the reduced
graph can be treated in acceptable time. So the reduced graph
algorithm is more faster, in spite of a supplementary phase of
calculation of local costs (which can be neglected compared
with the execution time of graph cut algorithm).

We have evaluated the graph cuts, in the both cases: full
graph and reduced one. Here are some results using the image
sawtooth [2] (see figure 2-a). We used a local criterion based
on SAD with a centred window of size 7. The test is done on

1http://www.boost.org/libs/graph/doc/index.html
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a P4 with 3GHz and 512MB of RAM. For sawtooth, of size
434 ∗ 380 and 20 levels of disparities, the calculation time is
about 15 seconds with N = 4, and 50 seconds for N = 5.
With the full graph, we could not test the method with the full
size image (memory explosion). Hence, we tested it with a
half-sized image (217 ∗ 190), the execution time is about 150
seconds, whereas with the reduced graph it is 4 and 5 seconds
for N equal to 4 and 5 respectively.

In figure 2: (b) presents the true disparity image, (c) and
(d) present the disparity images obtained respectively by the
reduced graph and full graph. We can visually appreciate the
quality: we have not yet done the qualitative test (as done in
[2]). To be notice that for our robotics applications, we aim to
use this algorithm in a mobile robot context: hence a reduced
execution time will be very appreciated, even with a detriment
of the quality of the disparity image.

(a) sawtooth image (b) true disparity image

(c) by reduced graph (d) by full graph

Fig. 2. experimental results.

5. CONCLUSION

We described in this article, our evaluation of graph cuts meth-
ods of stereo correspondence. The combination of a local
method, able to select a reduced set of possible matches for
each pixel, and a global method, based on the graph cuts al-
gorithm, let us to achieve: (1) sensibly ameliorate the quality
of disparity image obtained only by local method, and (2) to
avoid the combinatorial explosion of the Graph Cuts method
executed without preliminary reduction of the graph.

We will study some optimisations of our algorithm. Note
that we work always on pre-rectified images, and we produce
an integer disparity image: we will study how to ameliorate
the precision (sub-pixel interpolation of disparity) and how to
adapt this algorithm for not rectified images.
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d’images couleur en présence d’occultations, Ph.D. the-
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