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ABSTRACT

In this paper, we present a novel active contour model, in which
the traditional gradient descent optimization is replaced by graph
cut optimization. The basic idea is to rst de ne an energy func-
tion according to curve evolution and then construct a graph with
well selected edge weights based on the objective energy function,
which is further optimized via graph cut algorithm. In this fashion,
our model shares advantages of both level set method and graph cut
algorithm, which are “topological” invariance, computational ef -
ciency, and immunity to being stuck in the local minima. The model
is validated on synthetic images, applied to two-class segmentation
problem, and compared with the traditional active contour to demon-
strate effectiveness of the technique. Finally, the method is applied to
samples imaged with transmission electron microscopy that demon-
strate complex textured patterns corresponding subcellular regions
and micro-anatomy.

Index Terms— Image segmentation, Image color analysis, Im-
age texture analysis

1. INTRODUCTION

Images corresponding to natural scenes and certain class of scienti c
data are often complex requiring methods for automated or semi-
automated annotation for subsequent indexing, mining, and compar-
ative analysis. In this paper, we’ll couple the active contour models
and graph cut optimization method in a complementary fashion to
demonstrate a superior performance. One motivation for the devel-
opment of the method is based on segmentation of the specimen im-
aged with transmission electron microscopy displaying complex tex-
tured patterns corresponding to organelle and various complexes. It
is important to delineate and characterize these structures as a func-
tion of different experimental variables. Given the image complexi-
ties and required reliability, we have opted for a trainable system for
partitioning an image into distinct regions.

The active contour model evolves a front toward the desired
object boundary based on local and global shape constraints and
forces that reside in the image. It is an application of Differential
Geometry[11], rst introduced as “snakes” within the Lagrangian
framework and the “level set” within the Eulerian framework (e.g.,
implicit representation for active contours) [8, 12]. The level set for-
mulation allows for control over topological changes such as merg-
ing or splitting of fronts. The “geodesic active contour model”[19]
transformed the image segmentation problem into a geodesic com-
putation in a Riemannian space, according to a metric induced by
the image. These methods leverage the gradient information as a
constraint for terminating the curve evolution; thus, segmenting the
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image into distinct regions. These techniques may often have un-
desirable effects of uncontrolled leakage as a result of perceptual
boundaries. Chan and Vese [2] developed an active contour model
without edges that solve for an equilibrium state for regions inside
and outside of the front. Their method has been extended to textured
images [14]. The main limitation is in the initialization, which may
not lead to globally consistent labeling.

Graph cut was rst proposed by Greig et al.[5] in the context
of max- ow/min-cut algorithms (graph cut algorithms) in the con-
text of combinatorial optimization for minimizing an energy func-
tion. Graph cut algorithm [21, 15, 7, 9] has emerged as an increas-
ingly useful method for energy minimization in early vision, such as
segmentation[13, 10, 20], restoration[21] and stereo reconstruction[17,
18]. The advantage of the graph cut approach is ef cient optimiza-
tion of the energy function. Its disadvantage is in generating notice-
able geometric artifacts, known as metrication errors, as a result of
the discrete topology of graphs.

The combination of active contour and graph cut was rst pro-
posed in[1], where the geodesic active contours and graph cuts were
uni ed. The authors pointed out that with a large enough neighbor-
hood system and speci cally selected edge weights, the cost of the
cuts on the image grid would approximate to the Euclidean length of
the segmented object boundary.

In this paper, we propose an new active contour model which
uni es Chan and Vese’s active contour model[2] and graph cut al-
gorithm. This model combines advantages of ”topologically” free
front evolution, globally optimization, and reduces the sensitivity
to initialization. The rest of this paper is organized as follows: In
2, the Chan and Vese’s model and the graph cut method is sum-
marized. Section3, provides the details of our approach. Section4,
effectiveness of the proposed method against the traditional level set
approach is demonstrated. Additionally, we show the performance
of our method on complex samples that are imaged with transmis-
sion electron microscope. Section5 concludes the paper.

2. RELATED WORK

2.1. Active Contour Model

The active contour models are widely used for image segmentation.
In the Chan and Vese’s model[2], the energy functional F (c1, c2, C)
is de ned as

F (c1, c2, C) = μ · Length(C) + v ·Area(inside(C))
+ λ1

�
inside(C)

|u0(x, y)− c1|2dxdy

+ λ2

�
outside(C)

|u0(x, y)− c2|2dxdy

(1)
where u0 corresponds to the image, c1 and c2 are the mean fore-
ground and mean background intensity at a speci c iteration, and
μ ≥ 0, v ≥ 0, λ1, λ2 ≥ 0 are xed parameters. The level set
formulation of this model is given by considering C ⊂ Ω as the
zero level set of a Lipschitz function φ : Ω → R, in which Ω is a
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bounded open subset of R
2. Using the Heaviside function H , and

the one-dimensional Dirac measure δ0, de ned by

H(z) =

�
1, if z ≥ 0
0, if z < 0

δ0(z) =
dH(z)

dz
(2)

The curve evolution front, φ, can be written as:

∂φ

∂t
= δ

�
μdiv(

�φ

| � φ| )− v − λ1(u0 − c1)
2 + λ2(u0 − c2)

2

�
(3)

The level set evolves based on gradient decent method, which makes
the active contour models sensitive to initialization.

2.2. Graph Cut Method

Graph cut is a powerful tool for energy minimization. In the context
of segmentation, it is a binary labeling approach based on the graph
G = 〈V̄ , Ē〉 constructed from the image, where V̄ is the set of all
nodes and Ē is the set of all arcs connecting adjacent nodes. Usu-
ally, the nodes are pixels in the image and arcs are adjacency rela-
tionships with four or eight connections between neighboring pixels.
Additionally, there are special nodes, referred to as terminals, in the
graph structure, where terminals correspond to the set of labels that
can be assigned to pixels. In the case of a graph with two terminals,
terminals are referred to as the source(S) and the sink(T). Then the
labeling problem is to assign an unique label xp (0 for background
and 1 for foreground ) for each node p ∈ V̄ and the image cutout is
performed by minimizing the Gibbs energy E(X) [16]:

E =
�
p∈V̄

E1(xp) +
�

(p,q)∈Ē

E2(xp, xq) (4)

Where E1(xp) is the likelihood energy, encoding the tness cost for
assigning xp to p, and E2(xp, xq) is the prior energy, denoting the
cost when the labels of adjacent nodes p and q are xp and xq re-
spectively. Basically, the optimization algorithms could be classi ed
into two groups: Goldberg-Tarjan style “push-relabel” methods[6]
and Ford-Fulkerson style “augmenting paths” [4] . The details of the
two methods could be found in[3].

3. APPROACH

We focus on the two-class segmentation problem to show that equa-
tion 4 can approximate evolution of a front represented as level set.
Let C be the curve, uk(p) be the kth feature, pk

F be the probability
function of the kth feature of foreground and pk

B be the probability
function of the kth feature of background. The energy function to
be minimized is de ned as follows:

E = μ · Length(C) + v ·Area(inside(C))

−
N�

k=1

λk
F

�
Foreground

log pK
F (uk(p))dp

−
N�

k=1

λk
B

�
Background

log pK
B (uk(p))dp (5)

in which, u,v,λk
F and λk

B are xed parameters. Let φ(p) > 0 if
p ∈ Foreground, and φ(p) < 0 if p ∈ Background. Then the

(a) (b)

Fig. 1. (a)an 8-neighborhood con guration on a 2D grid, and (b) one
family of lines on the grid.

above energy function can be formulated as,

E = μ

�
Ω

| ∇H(φ(p)) | dp + v

�
Ω

H(φ(p))dp

−
N�

k=1

λk
F

�
Ω

log pK
F (uk(p)) ·H(φ(p))dp

−
N�

k=1

λk
B

�
Ω

log pK
B (uk(p)) · (1−H(φ(p)))dp (6)

The Euler-Lagrange equation for φ can be written as:

∂tφ = δ ·
�

N�
k=1

log
pk

F (uk)λk
F

pk
B(uk)λk

B

+ μdiv
∇φ

| ∇φ | − v

�
(7)

However, gradient descent greatly relies on the initialization and
cannot guarantee global convergence, but the graph cut method can.
Assume that xp = H(φ(p)), so that xp ∈ {0, 1}, xp = 1, if
p ∈ Foreground and xp = 0, otherwise. Based on a discrete
graph grid, the objective energy function can be written as:

E = μ · Length(C) + v
�

p

xp

−
N�

k=1

λk
F

�
p

log pk
F (uk(p)) · xp

−
N�

k=1

λk
B

�
p

log pk
B(uk(p)) · (1− xp) (8)

in which, p is treated as the node of the graph. To optimize the
active contour model mentioned above via graph cut, another im-
portant aspect is to choose the n-link (link between nodes) of the
graph model and to approximate the Euclidean length of C(| C |ε).
For an 8-connected neighborhood system, as shown in Figure1, [1]
demonstrates that:

| C |ε≈
�

k

nc(k) · δ2 · �φk

2· | ek | (9)

where nc(k) is the number of intersections of the curve C with the
kth family of edge-lines, δ is the cell-size of the grid, | ek | is the
Euclidean length of vector ek, and �φk is the angular differences
between the kth and (k + 1)th edge lines: �φk = φk+1 − φk. It
is clear that selection of constant edge weights within each family

of edge lines as wk = δ2·�φk
2·|ek| will produce a Euclidean length of

C that can be approximated by the cut length in the graph grid. For
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Edge Weight For

p → S v −�k λk
F log pk

F (uk(p)) p ∈ G

p → T −�k λk
B log pk

B(uk(p)) p ∈ G

e{p,q} π
8T

, T ∈ {1,
√

2} {p, q} ∈ N

Table 1. Edge weights for the graph construction, G is the graph, N

is the neighborhood system.

an 8-neighborhood system, the edge-weights of the graph shown in
Table 1.

With the edge weights de ned above, we construct a classi-
cal two-terminal graph, and apply the graph cut algorithm describe
in[20] to solve the optimization problem.

4. EXPERIMENTAL RESULTS

Image Size Feature Type T1 T2

Cat 350×209 Color 10.2s 2.3s
Texture 319×158 Texture 3.3s 2.7s
Zebras 481×321 Both 99.6s 80.8s

Table 2. Computational time for the traditional level set (T1) and
our method (T2).

We have applied our approach to the two-class image segmen-
tation problem, in which both color and texture features could be
incorporated. The color features are represented in (RGB) domain,
and texture features are extracted by gabor lter bank. Taking the
user speci ed foreground and background samples as input, we es-
tablish four (or two, if only color or texture is considered) Gaus-
sian Mixture Models (GMM ) to model the distributions of fore-
ground color, background color, foreground texture and background
texture, which are represented as GMM1

F , GMM1
B , GMM2

F and
GMM2

B , respectively. In this way, we have

pk
F =

GMMk
F

GMMk
F + GMMk

B

; pk
B =

GMMk
B

GMMk
F + GMMk

B

; k = 1, 2

We consider each pixel in the image as a node and construct the
graph according to Table 1.

Figure 2 shows labeling results on real and synthetic images and
comparison of these results with the traditional level set method. It is
clear that the proposed method reduces fragmentation. Furthermore,
Table 2 indicates that the computational complexity of our method
is comparable to the traditional level set method. This is because the
traditional level set is iterative, while graph cut is not. Figure 3 in-
dicates performance of the method on samples that are imaged with
transmission electron microscopy. Note that the images are generally
noisy and different components of the micro-anatomy have unique
textures. Again, the system has enabled segmentation as a precursor
for detailed morphological analysis.

5. CONCLUSION

In this paper, we have proposed a new active contour model which
uni es Chan and Vese’s model and the graph cut algorithm. In this
way, our model shares advantages of both two standard segmenta-
tion approaches, which are “topologically” free, computational ef-
ciency, and immunity to local minimum through the energy mini-

mization approach. These advantages are ensured by intrinsic prop-
erties of level set method and graph cut algorithm and are further
demonstrated by some comparisons of experimental results between
our approach and the traditional level set method. Our future re-
search will focus on the extension of this method to integration of
multiphase level set with the graph cut optimization.
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(a) (b) (c)

Fig. 2. Segmentation results for synthetic texture (top row), color animated image (middle row), and natural image with complex color and
texture (bottom row): (a) original image with user speci ed seeds, (b) segmentation with the level set method, and (c) segmentation with the
proposed method.

(a) (b) (c)

Fig. 3. Segmentation results for samples imaged through transmission electron microscopy with the trained regions (top row) and automated
labeling (bottom row): (a) 70nm thick section through a zebra sh notochord, (b) 1nm thin slice through 3D tomographic volume of frog
sensory epithelia hair bundle stereocilia, and ( c) 70nm thick section of Arabidopsis hypocotyl tissue.
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