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ABSTRACT

A framework for active contour segmentation in vector-valued
images is presented. It is known that the standard active contour is
a powerful segmentation method, yet it is susceptible to weak edges
and image noise. The proposed scheme uses foveal wavelets for an
accurate detection of the edges singularities of the image. The foveal
wavelets introduced by Mallat [1] are known by their high capa-
bility to precisely characterize the holder regularity of singularities.
Therefore, image contours are accurately localized and are well dis-
criminated from noise. Foveal wavelet coefficients are updated using
the gradient descent algorithm to guide the snake deformation to the
true boundaries of the objects being segmented. Thus, the curve flow
corresponding to the proposed active contour holds formal existence,
uniqueness, stability and correctness results in spite of the presence
of noise where traditional snake approach may fail.

Index Terms— wavelet, active contour, segmentation, color im-
ages.

1. INTRODUCTION

Image segmentation is one of the basic problems in image analy-
sis. Object detection has been studied since the early days of image
analysis and computer vision and different approaches have been
proposed. For a complete survey, the reader may refer to [2]. Active
contour models can assist the process of object detection by provid-
ing high level information in the form of continuity constraints and
minimum energy constraints related to the contour shape and image
characteristics. The active contour method that has attracted most
attention is known as Snake [3] [4] [5] [6] [7]. A snake is an energy
minimizing curve which deforms its shape under the control of inter-
nal and external forces. These forces are specified so that the snake
will hopefully achieve a minimal energy state when it matches the
desired boundary to be detected.
In general, snakes use intensity gradient information as a feature to
direct the curve deformation. However, intensity edges may appear
in the scene without a material transition to support it. In addition,
the intensity of the illumination may vary spatially over the scene
causing a gradual change in intensity over the object’s surface even
though the surface is homogeneously painted.
Because intensity-based edge detectors cannot distinguish between
various transition types, our attention is directed toward the use of
multiscale approaches, namely the wavelets. The choice of which
wavelet to use should be based on the precise contour localisation
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capability of that wavelet.
The foveal wavelets were first introduced in [1]. They mimic the
non uniform distribution of photoreceptors on the retina. The visual
resolution is highest at the center (fovea) of the retina, but falls off
away from the fovea. This effect is modeled by foveal approximation
spaces introduced in [1]. For example the piecewise constant foveal
approximation space at the center u ∈ R is the set of all functions
which are constant on [u− 2j+1, u− 2j) and (u+2j , u+2j+1] for
any j ∈ Z. Projections in a foveal approximation space approximate
functions with a resolution that decreases proportionally to the dis-
tance from u. Foveal approximation spaces are defined by dilating a
finite family of foveal wavelets, which are not translated. Therefore,
foveal wavelet coefficients give a pointwise characterization of sin-
gularities and precise approximations of piecewise regular functions
are obtained by foveal approximations centered at singularity loca-
tions. As a result, the foveal wavelets can better localize edges than
other wavelets.
Having well represented the edges, the foveal wavelet coefficients
serve as weights that direct the snake curve deformation during the
segmentation process. Therefore, an accurate edge detection is ob-
tained.
The rest of the paper is organized as follows. In section 2, a re-
view of the foveal wavelet is given. Section 3 aims to represent the
traditional snake approach. In section 4 the foveal-wavelet snake
approach is described. In section 5 experimental results are shown.
Finally, section 6 presents some concluding remarks and perspec-
tives.

2. FOVEALWAVELETS

2.1. Review of the foveal wavelets

The contours are considered as one-dimensional singularities that
move in the plane of the image. Foveal wavelets are orthogonal
wavelets that are centered at the same location as if to absorb the
singular behavior of the image [1]. These wavelets zoom on a sin-
gle position u. It should be insured that the left and right indicators,
1[u,+∞) and 1(−∞,u], can be written as a linear combinations of
foveal wavelets in order to be able to reconstruct singularities.
If Vu is the space generated by the foveal wavelet located at u, then
the orthogonal projection of a function f in Vu is given by:

PVuf (t) =
J∑

j=−∞

2∑
k=1

〈
f, ψk

j,u

〉
ψk

j,u (t) (1)

Where ψ is the mother foveal wavelet. These wavelets are charac-
terized by their ability to eliminate singularities located at u. If f is
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differentiable in a left and right neighborhood of u, but not in u then
it has been shown in [1] that f − PVuf is continuous at u and has a
bounded derivative over a whole neighborhood of u. Therefore, the
singularity of f at u is absorbed by the wavelet coefficients at u.
Singularities of f are entirely characterized by the foveal wavelet
coefficient at u. It has been also shown in [1] that f is Lipschitz α

at u if and only if
∣∣〈f, ψk

j,u

〉∣∣ = O
(
2−α(j+1/2)

)
. Singularities can

be detected by computing

ε (u) =
J∑

j=−∞
2−2j

2∑
k=1

∣∣∣〈f, ψk
j,u

〉∣∣∣2 (2)

If f has a Lipschitz regularity α < 1 at u, and hence is not
differentiable at u then ε (u) → +∞, but if f is Lipschitz regularity
α > 1 at u then ε (u) < +∞. Singularities are thus detected from
the amplitude of ε(u).
We can, therefore, distinguish between noise singularities (negative
Lipschitz component) and edge singularities from the amplitude of
ε(u).

2.2. Edge detection using foveal wavelets

The singularities of an image I are detected with one dimensional
foveal wavelets, along each line and each column of the image. De-
tected singularities are chained together to form edge curves in two
dimension.
Let {f (x1, u2)}x1∈R

be a horizontal scan line, where u2 is fixed and
x1 varies. {f (x1, u2)}x1∈R

is decomposed over one-dimensional
foveal wavelets. For each u we compute

εu2 (u) =
∑

j

2−2j
2∑

k=1

∣∣∣〈f (x1, u2) , ψk
j,u (x1)

〉∣∣∣2 (3)

Any singularity corresponds to a point u1 where εu2 (u) is locally
maximum when u varies. This singularity is located in the image
plane at the position (u1, u2). The same procedure is repeated along
the columns of the image to detect singularities.
Horizontal and vertical detected singularities are chained together to
form edge curves. Figure 1 (b) shows a family of curves detected
along each row and column of the noisy image in Figure 1 (a). This

(a) (b)

Fig. 1. (a) noisy image, (b) edge curves detected along each row and
column

representation will guide the snake deformation toward the edges of
the image.

3. ACTIVE CONTOUR METHODS: SNAKES

3.1. The Traditional Approach

An active contour is a deformable continuous curve

X (s) = [x1 (s) , x2 (s)] , s ∈ [0, 1] (4)

that moves through the spatial domain of an image I to minimize an
energy functional E. The energy E associated with the curve is a
weighted sum of internal and external energies [3] [8]

E = αEint + βEext (5)

The internal energy of a snake measures the desired properties of a
contour’s shape. In order to obtain smooth and physically feasible
results, an elasticity and smoothness constraint are used in the en-
ergy functional. The smoothness constraint is, in general, based on
the curvature of the active contour, which may be computed analyti-
cally from the properties of the contour. Then the internal energy is
defined as follows:

Eint =

⎛
⎝∮

s

(∥∥X(s)′
∥∥2

+
∥∥X(s)′′

∥∥2
)

ds

⎞
⎠

⎛
⎝∮

s

∥∥X (s)′
∥∥ ds

⎞
⎠
(6)

Where ‖X(s)′‖2 and ‖X(s)′′‖2 denote the first and second deriva-
tive of the curve with respect to s, and are measures for respectively
the elasticity and smoothness. Measures independent of the spatial
scale are obtained by multiplying the shape measure with the length
of the contour.
The external energy is derived from the image in such a way that the
snake is attracted to certain image features. Definitions of external
energy are, amongst others, based on the image intensity, I(x, y) or
on the intensity of the Gaussian smoothed image. However, in most
snake-type techniques the intensity gradient is considered as the pri-
mary image feature, leading to the following external term:

Eext =

∮
s

−‖∇I (x1, x2)‖ ds (7)

Where the gradient image ‖∇I (x, y)‖ is usually derived from the
intensity image through Gaussian smoothed derivatives.

3.2. Color Snake

A color image (R, G, B) can be considered as a function which
maps a two dimensional spatial information to a three dimensional
color space. The gradient of this field can be generalized to the
derivatives of the vector field. The principled way to compute gra-
dients in vector images as described by Silvano di Zenzo [9] and
further used in [10] and [11] is summarized as follows.
Let I (x1, x2):R2 → R

m be an m-band image with components for
Ii (x1, x2) : R

2 → R for i = 1, 2, 3, ....., m (m = 3 for color
images). Hence, at a given image location the image value is a vec-
tor in R

m. The difference at two nearby points A = (x0
1, x

0
2) and

B = (x1
1, x

1
2) is given by ΔI = I (A) − I (B). Considering an

infinite small displacement, the difference becomes the differential

dI =
2∑

i=1

∂I
∂xi

dxi and its squared norm is given by:

dI2 =
2∑

i=1

2∑
j=1

∂I
∂xi

∂I
∂xj

dxidxj =
2∑

i=1

2∑
j=1

gijdxidxj

=

[
dx1

dx2

]T [
g11 g12

g21 g22

] [
dx1

dx2

] (8)
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Where gij = ∂I
∂xi

∂I
∂xj

and the extrema of the quadratic form are

obtained in the direction of the eigenvectors of the matrix [gij ] and
the values at these locations correspond with the eigenvalues λ+ and
λ−. The eigenvectors provide the direction of maximal and mini-
mal changes at a given point in the image, and the eigenvalues are
the corresponding rates of change. Therefore, an approximation of
edges for vector-valued images should be function f = f(λ+, λ−).
Since a function of the type f = f(λ+, λ−) becomes the vector-
image replacement of ‖∇I‖ for singled-valued images (m = 1),
traditional snake approach defined in (6) and (7) can be basically ex-
tended to vector-images by replacing the norm of the gradient with
f = f(λ+, λ−).

4. FOVEALWAVELET-BASED COLOR SNAKE

We define a continuous foveal wavelet snake on a plane S �F de-
fined in turm of the foveal wavelet coefficients.

S �F ≡
(

SF 1
(
t, �w1

)
SF 2

(
t, �w2

) )
(9)

SF i
(
t, �wi

)
≡ ci +

∑
j,k∈Z

�wi
j,kψi

j,k (t) , i = 1, 2 (10)

where t ∈ [0, 1) is a contour parameter of the snake and �wi are the
foveal wavelet coefficients (�w1 for the vertical coefficients and �w2

for the horizontal coefficients). ci is the mean value of SF i.
The deformation of the foveal wavelet snake is performed in a
model-based manner. In this work, the foveal wavelet edge represen-
tation, described in the previous section, is used to guide the snake
deformation.
Therefore, the image is considered as composed of background and
one object of interest, each of which having unique properties repre-
sented by descriptors Vout and Vin respectively. For a given image
domain Ω, let us define the following general criterion

J (Ω) = α

∫
Ωin

Vin (Ωin, x) dx+ β

∫
Ωout

Vout (Ωout, x) dx (11)

Where α and β are positive constants, Ωin and Ωout are the inside
and outside domain of the object (Ω = Ωin ∪ Ωout). Vin and Vout

are positive functions such that Vin is minimum in the object, i.e.

Vin (Ωin, x) = (μ (Ωin) − I (x))2 (12)

where μ is the mean intensity

μ (Ωin) =

∫
Ωin

I (x) dx∫
Ωin

dx
(13)

Vout is minimum in the background, meaning that no specific infor-
mation is available for the background.

Vout (Ωout, x) = (μ (Ωout) − I (x))2 (14)

If T represents the model image described above, and a foveal
wavelet snake is placed on this image (T = Vin ∪ Vout), there are
three possibilities for the value of J :

• If the snake is completely confined inside Ωin, the value of the
cost function J is greater than zero because the value of the
first integral is equal to zero whereas the second is greater than
zero.

• If the snake is completely outside Ωin, the value of t he cost
function J is also greater than zero because the first integral is
greater than zero and the second is equal to zero.

• If the snake fits the boundary of the two regions Ωin and Ωout,
the cost function J becomes zero, because both integrals will
be equal to zero.

Therefore, the minimum of criterion (11) is reached if Ωin seg-
ments the object of interest.
In this work, we used the foveal wavelet edge representation at a par-
ticular scale as a given image T . In other words, the foveal wavelet
snake was used to fit the edges for estimating the boundary of the
object of interest.
The minimization of the cost function J can be performed by up-
dating the foveal wavelet coefficients wi

j,k in equation (10) by using
the gradient descent algorithm as follows (it is to be noted that J is
a function of Ω, which in turn is a function of wj,k):

wi
j,k ← wi

j,k − η
∂J

∂wi
j,k

(15)

Where η is a small constant specifying the step size in the gradient
descent algorithm. In a closed form, the partial derivative ∂J

∂wi
j,k

can

be written as:

∂J

∂wi
j,k

=

[
W

(
j
∂SF 1

∂t

)]
j,k

−
[
W

(
j
∂SF 2

∂t

)]
j,k

(16)

Where [W (f)]j,k indicates the foveal wavelet coefficient of f at a
scale j and a position k.
It is to be noted that this derivative could be computed using the fast
wavelet transform. In fact, by using (12) and (14) we can rewrite the
cost function J as follows:

J =
∫

Ωin

Vindx+
∫

Ωout

Voutdx

=
∫

Ωin

(Vin − Vout) dx+

[ ∫
Ωin

Voutdx+
∫

Ωout

Voutdx

]

=
∫

Ωin

(Vin − Vout)dx+
∫
Ω

Voutdx

(17)
Because the second term in (17) is a constant, we denote that turm
by

C ≡
∫
Ω

Voutdx (18)

Because C is a constant, the partial derivative of J with respect to a
foveal wavelet coefficient wi

j,k is equal to:

∂J

∂wi
j,k

=

1∫
0

(Vin − Vout) |J | dt (19)

Where |J | is a Jacobian for the change of parameters, which is de-
fined by

|J | =

∣∣∣∣∣
∂SF1

∂t
∂SF2

∂t
∂SF1

∂wi
j,k

∂SF2

∂wi
j,k

∣∣∣∣∣ =
∂SF 1

∂t

∂SF 2

∂wi
j,k

− ∂SF 1

∂wi
j,k

∂SF 2

∂t
(20)

We assume the mean values of the wavelet coefficients to be zero and
that the foveal wavelet coefficients are orthogonal, we can obtain the
following equation:

∂SF l

∂wi
j,k

=
∂

∂wi
j,k

{∑
p,q

wi
p,qψ

l
p,q

}
= ψl

j,k (21)
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Substituting (20) and (21) into (19), we obtain the closed form (16).
Therefore, the computation of the snake deformation is made less ex-
pensive compared to the traditional snake approach which involves
computationally expensive energy minimization process.
Another advantage is that the smoothness of the snake can be con-
trolled by selecting appropriate wavelet scale.

5. EXPERIMENTAL RESULTS

This section is devoted for the evaluation of the foveal snake ap-
proach. To achieve this, we apply the traditional snake approach and
the foveal wavelet snake approach to the noisy image in figure 2(b).
The noisy image was obtained by adding a white gaussian noise with
a variance of 0.2 to the image of figure 2(a). The corresponding edge
representation of the noisy image obtained by the scheme described
in section 2 is shown in figure 3.

(a) (b)

Fig. 2. (a) Original House image, (b) Noisy image

Fig. 3. (a) Edge representation obtained by using the foveal wavelet

The results of the active contour segmentation using the tradi-
tional snake approach (detailed in section 3) and the foveal wavelet
based snake are shown in figures 4(a) and 4(b) respectively (the num-
ber of iterations is fixed to 500 for both experiences).
The initial snake in each case was a square at the edge of the im-

age. A simple subjective examination clearly demonstrates that the
foveal snake approach can identify objects boundaries in spite of the
presence of noise.

6. CONCLUSION

A foveal wavelet based active contour was proposed. It integrates
the foveal wavelet high accuracy edge representation with the tradi-
tional snake approach in order to achieve a noise invariant contour
based segmentation.

(a) (b)

Fig. 4. (a) Traditional Snake approach described in section 3 and ex-
tended to color image as explained in section 3.2, (b) Foveal wavelet
snake approach

Further investigations for a complete characterization of the capture
range of the foveal wavelet coefficients would help in snake initial-
ization procedure. Perhaps, finding a way to automatically choose
an optimal wavelet scale could help in these investigations.
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