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ABSTRACT

In this paper we present a snake-based method for efficiently
detecting contours of objects with boundary concavities. The 
proposed method is composed of two steps. First, the object's
boundary is detected using the proposed snake model. Second, 
snake points are optimized by inserting new points and deleting 
unnecessary points to better describe the object's boundary. We 
use the Frenet formula to calculate the binormal vector at snake
points and use a regional similarity energy to prevent snake points 
from converging on foreign edges. Moreover, we use the result to 
control the direction of movement for snake points near boundary
concavities. The proposed algorithm can successfully detect 
boundary of objects. Experimental results have shown that our 
algorithm produces more accurate contour detection results than 
the conventional algorithm. 

Index Terms— Contour detection, segmentation, Snakes

1. INTRODUCTION 

Detecting the boundary of an object is the basis for many
important applications such as machine vision, image and video 
coding and content-based retrieval systems [1]. In fact, the 
MPEG-4 standard [2] is an object-based image and video coding 
algorithm that requires object segmentation in the first stage. 

Over the past two decades, various object segmentation
schemes have been developed for extracting an object from an
ordinary image. The active contour (snake) model [3-8] is one 
such scheme that has been successfully used in computer vision
and object recognition. The snake is an energy-minimizing spline
guided by internal forces that preserve its characteristics, and
external forces that pull it toward image features such as lines and 
edges. However, the snake-based boundary detection approach
suffers from challenges such as the difficulty in progressing into 
boundary concavities and the fixation of snake points, which is 
usually fixed. Cohen’s method was proposed to address the
concavity problem with pressure forces [4]. This model is to have 
large external forces far away from the desired boundaries, and
can push an active contour into boundary concavities, but when it
is too strong weak edges will be overwhelmed. Moreover, pressure 
forces must also be initialized to push out or push in, a condition
that mandates careful initialization. Xu and Prince proposed the 
GVF (gradient vector flow) snake [6] to handle both problems. 
The GVF method uses a spatial diffusion of the gradient of the 
edge map of the image instead of using the edge map directly as
an external force. Although the method has the advantages of

insensitivity to initialization and the ability to move into boundary
concavities, it can not handle gourd-shaped concavities. This is
due to the concentration of GVF energy in the neck of the gourd. 
Moreover, GVF snakes require a long computation time for
generating the GVF map.

In this paper we present a snake-based method for object 
segmentation addressing the above challenges through a modified 
snake model with optimized number of points.  We propose a new
modified internal energy of the snake model and a regional
similarity energy as a component of the external energy to handle 
the concavity problem and ignore foreign edges, respectively.
Optimizing the number of snake points is used to better describe 
the object's boundary.

This paper is organized as follows. Section 2 covers a 
background on the snake model. Our proposed method for 
extracting objects with boundary concavities is presented in
Section 3. In Section 4 we show experimental results for 
evaluating the performance of our method, and the conclusions are 
given in Section 5. 

2. THE SNAKE MODEL 

In the discrete formulation of a snake [5], the contour is 
represented as a set of snake points  for ),( iii yxv 1,...,0 Mi
where  and are the 

ix iy x  and coordinates of a snake point, 
respectively and 

y
M is the total number of snake points. Then the 

energy function for a snake point is typically written in the form
. The first component is called the 

internal energy and it concerns contour properties such as
curvature and discontinuity. The second component is the external
energy which is typically defined as the gradient of the image at a 
snake point.
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3. PROPOSED ALGORITHM 

Our proposed method modifies the conventional snake model, and 
introduces a region similarity energy and a mechanism for the 
insertion and/or deletion of snake points as necessary.

3.1 Proposed new snake energy function
In this section, we describe our special snake energy function. 
Internal energy is typically expressed in terms of two terms:
continuity energy, and curvature energy. Our modifications to 
these two terms and to the external energy term will be explained 
in the following subsections.
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3.1.1 Internal energy terms

Continuity energy: The main role of the conventional continuity
energy term is to make even spacing between the snake points by
minimizing the difference between the average distance and the
distance between neighboring snake points. In this arrangement 
point spacing is globally and uniformly constrained by average 
distance. This is not suitable for objects with concavities because 
distance between snake points should be relaxed in boundary
concavities. Therefore, in our method, point spacing in boundary
concavities is allowed to differ from other parts of the snake. We
define the normalized continuity energy as follows: 

max

11
)(

con

vvvv
vE

iiii
icon                   (1) 

where is the maximum value in the search neighborhood.
The proposed continuity energy encourages for spacing between 
neighboring snake points in concave parts of the object’s
boundary.

maxcon

Curvature energy: For curvature energy, the goal is to control the 
smoothness of the contour between neighboring snake points. The 
way in which this term is formulated affects the ability of snake 
points to progress into boundary concavities, and conventional 
snake models show poor performance in this aspect.  In this paper 
we present a new curvature energy solving the problem based on 
the Frenet formula.  As depicted in Fig. 1(a), let  be 
a unit-speed curve. Then, 

3: I
'T is the unit tangent vector field

on , and '' / TTN is the principal normal vector field of ;

where 'T is the length of the curvature. The vector field 

 on is the binormal vector field of , and the sign 
of the z-dimension of 

NTB
B is positive if B is upward and is

negative if it is downward. Therefore, we consider the sign of the 
binormal vector. In 2D the sign of the binormal vector  can 
be obtained using the cross product of the two vectors  and

 as follows: 
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where ( , ) and ( , ) are theT
ix T

iy N
ix N

iy x  and  coordinates of
the tangent vector and normal vector  at the current

point , respectively.

y

)( ivT )( ivN

iv ze is a unit vector of the z-component. In 
the discrete formulation of a snake point,  and  are 
defined as follows :
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In the case that a snake point is outside the object (as in Fig. 1(b, 
c)), the movement of a snake point can be described as follows:

i) When is negative, as the case in Fig. 1(b),  moves in
the opposite direction of seeking a location with 
maximum value of 
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Fig. 1. Movement of snake points based on binormal vector. 

ii) When is positive, as the case in Fig. 1(c), the snake 
point must take the direction of  to minimize
curvature and to converge on the boundary of the object.

)( ivB

iv )( ivN

The normalized curvature energy is defined as Eq. (4). It is further
weighted by the constant , as given in Eq. (5). 
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The constant can be set for different applications, relative to 
the sign of on the contour. In our work, )( ivB is set to 1

when the sign of  is positive and  otherwise.)( ivB 1

3.1.2 External energy function
In this subsection, we propose two external energies: Edge energy,
and Regional Similarity energy.

Edge energy is external energy component and is defined as 
max/)(*)( evfvG ii

, where  is a two-dimensional
Gaussian function with standard deviation 

)( ivG
 and is the gradient 

operator. is the image intensity function, and  is the
maximum value in the search neighborhood.

)( ivf maxe

Regional Similarity energy (RSE) is our proposed energy for 
pushing the mean intensity of the polygon enclosed by the snake 
contour to be as close as possible to the mean intensity of the OOI.
The smaller intensity difference between the polygon and the
object, the closer the snake approaches the object contour. This
energy can prevent snake points from converging onto foreign 
edges in the background. 

As illustrated in Fig. 2, the window is searched for the 
point which produces the minimum polygon area. The contour
created by such point is referred to as C , and is regarded as the 
base area contour.  Mean intensity of the area enclosed by  is 
regarded as the base mean intensity m Next, the window

iW
searched for a point p which yields a polygon with the minimum
intensity variance relative to minC .  Fo ch candidate point in

iW , a second contour ( areaC ) is produced and the marginal area 

areaC minC is de e search seeks a point p that yields a 
rginal area with minimum variance to minC .  We refer to this 

measure as RSE and is defined as: 
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where is the maximum possible RSE values in the

neighborhood, and 
maxRSE

A is the area of ( ), and can be
calculated by using the equation: 
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Fig. 2. Regional similarity energy.
where (

1
) is equal to ( ) for a closed snake contour

and n is the total number of snake points. In our case, we only
consider four snake points ( ), ( ), ( ),
( ).
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3.2 Optimizing the number of snake points 
After snake points converge in the first step to the boundary of the
object, additional points are inserted and unnecessary points are
deleted to better describe the boundary concavities. The newly
inserted point is defined as . This method was 
explained detail in [8].

2/)( 1iii vvc

3.3 Movement of inserted points 
Inserted points will not usually fall on the object’s boundary and
therefore need to be relocated to the boundary. In stereo-based 
approach, we can find out where an inserted point is located using
disparity information [7]. However, in 2D we need a different 
solution. Fig. 3 illustrates the decision controlling the movement
of inserted points taking into consideration whether the inserted
point is inside or outside the object. As shown in the Fig. 3, the 
sign of is negative in concave segments and positive in 
convex segments. To decide the movement of an inserted point, 
we first check the sign of its binormal vector  relative to
previous and next inserted points. If the sign of  is negative,
then the point is outside, and in that case we apply exactly the
same scheme explained in subsection 3.1.1 above. On the other
hand, if the inserted point turns out to be inside (i.e., if the sign of 

is positive), we apply the same scheme except that we
reverse the signs for 
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Fig. 3.  Movement of inserted points in convex/concave segments 
of the object's boundary.

where the sign is the binary XOR operation. The simulation 
process and its results are illustrated in Figs. 4  7, and the 
performance comparison in terms of and computational time 
is listed in Table 1.

RSD

Fig. 4 shows results of an experiment on an ordinary image for
an object with boundary concavities. The greedy snake could not
detect the boundary of the object, Fig. 4(a), but the GVF snake 
points converged successfully, Fig. 4(b) because the object has
only concavities without gourd-shaped boundary. With our 
proposed algorithm the snake points also converged onto the
boundary concavity in only four optimization iterations, Fig. 4(c). 

Fig. 5 and Fig. 6 show results of an experiment on an ordinary
and binary image for an object with gourd-shaped concavities. 
The greedy snake could not detect the boundary concavities of the
object as shown in Figs. 5(a) and 6(a), and the GVF snake points
failed to proceed beyond the neck of the gourd as shown in Figs.
5(b) and 6(b). However, with our proposed algorithm the snake
points converged better onto the boundary concavity in only four 
optimization iterations as shown in Figs. 5(c) and 6(c). Fig. 6(d) 
shows the results for our proposed algorithm on an ordinary image. 

4. EXPERIMENTAL RESULTS 

To verify the performance of our algorithm a set of experiments
has been performed.
The algorithm was coded in Visual C++ 6.0, and the experiment 

was performed on a Pentium IV machine with 1GByte of memory
running at 3GHz clock speed. We used binary and color real 
images with 320×240 and 256×256 image size. 

We performed an additional test involving our algorithm and 
the GVF snake on an MR image of the left ventricle of a human
heart as shown in Fig. 7. Both snakes were initialized inside of the 
object (ventricle). Our algorithm performed a complete
segmentation (b), while the GVF segmented the left side only. The
GVF snake can segment the whole ventricle only if it were 
initialized in the space between the papillary muscles (the bumps
that protrude into the cavity).

The criterion used to verify the accuracy of the estimated snake
region , compared with the original object region  is 
Relative Shape Distortion, , which is defined as: 

estR oriR
)(RRSD

Performance comparison between the proposed algorithm and 
the conventional algorithm in terms of RSD and computational 
time is summarized in Table 1.fyx

oriest
fyx
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(a) (b) (c) (a) (b) (c)
Fig. 4. Results of experiment on the object with concavities. 
(a) Greedy snake, (b) GVF snake, (c) Proposed algorithm. 

Fig. 5. Results of experiment on an object with gourd-shaped 
concavities. (a) Greedy snake, (b) GVF snake, (c) Proposed
algorithm.

(a) (b) (c) (d)
Fig. 6. Results of experiment on the gourd-shaped object: (a) Greedy snake, (b) GVF snake, (c),(d) Proposed algorithm. 

Experimental results show that the proposed method gives more 
accurate results than other methods. Moreover, the computational
time of our proposed method is satisfactory, while the GVF snake
needs a long time for computation.

5. CONCLUSIONS 

In this paper, we have presented a new snake-based scheme for 
efficiently detecting contours of objects with boundary concavities. 
Our method extends and improves the conventional snake model. 
The developed method was tested and showed successful results 
in extracting objects with boundary concavities.

In the proposed new snake method the movement of snake
points is determined using the sign of the cross product of the 
tangent and normal vectors (i.e. binormal vector). In addition, we
proposed a regional similarity energy to detect the boundary and
ignore foreign edges. We used optimizing the number of snake
points to better describe the object's boundary. In consequence, we 
can solve the problem which occurs with gourd-shaped boundary
concavities. Performance has been evaluated by running a set of 
experiments using 2D image data having objects with varying
degrees of boundary concavity. When compared with
conventional snake algorithms, our method has shown a superior
object segmentation capability in terms of accuracy. Further
research work is being considered to follow up from object 
segmentation to object tracking in video sequences.
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