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ABSTRACT 
 
We introduce a theoretical framework for implicit evolution of 
an open ended curve in a two-dimensional image plane. This 
approach is particularly suitable for identifying thin 
filamentous structures present in 2D images. The open ended 
curve is represented as the centerline of the level set of a 
function (called the curvature map) defined on the curve. The 
iterative evolution of the curvature map is guided by a diffusion 
equation and constrained by the imaging force, such as the 
image intensity gradient. The centerline of the evolved 
curvature map provides the position of the curve in subsequent 
iterations. We have tested this new model on both synthetic and 
real images that contain structures including 
rivers/roads/arteries. Nine experiments show that our model is 
successful in identifying complex topological filaments with a 
low 9% RMSE pixel error, and that the technique withstands 
effects of shape irregularities such as kinks, bending, circularity 
and inconsistent edges. 

 
Index Terms— Image segmentation, open ended curve, diffusion 
 

1. INTRODUCTION 
 
The goal of this paper is to build a theoretical framework to 
represent and evolve smooth open ended curves implicitly in 
2D images. The open ended curve is a special case of a 
manifold with boundaries and having codimension1 greater 
than one. Most applications of, and existing mathematical 
theory for implicit models such as the level set method, 
focus on the evolution of hypersurfaces, i.e., codimension 
one motion. For example, level set methods are used in the 
segmentation and tracking of object boundaries in 2D 
medical or aerial images [6,10,11] which are instances of 
codimension one motion of a closed curve in 2D space. This 
traditional approach to the level set formulation of active 
contours needs to be extended to the evolution of open 

                                                 
1The codimension of a manifold in the context of an embedding is 
defined as the difference between the dimension of the manifold 
and the dimension of the evolving space. For example, in the case 
of an open ended curve in a plane, the maximum codimension of 
the embedding is two, when we consider the end points of the 
curve having dimension zero being embedded in the plane with 
dimension two (with the resultant codimension being 202 =− ). 

ended curves (of codimension 2) to identify/segment open 
ended filamentous structures in images such as thin blood 
vessels in MRI or road/river networks in satellite images. 

The overall contribution of our work can be 
summarized as follows: 

• Developing a novel implicit representation of open 
ended curves in 2D 

• Establishing a mathematical model for the time 
evolution of the implicit representation that 
consequently evolves the open ended curves in 2D 

• Applying the new model to track filamentous 
structures in 2D images by open ended curves 

Recent work in differential geometry has laid the 
groundwork necessary to evolve manifolds in spaces of 
arbitrary dimension using level set methods [1]. These have 
been applied to the evolution of infinite (or closed) curves in 
3D, as in the case of segmenting blood vessels in volumetric 
magnetic resonance angiography images [5]. The 
mathematical framework for motion of infinite (or closed) 
curves in 3D has also been developed independently by 
Burchard et al. [4]. A diffusion-generated motion by mean 
curvature also addresses the same problem by resorting to a 
modified form of the complex Ginzburg-Landau equation 
[8]. All of the existing extensions of the level set method to 
handle cases of arbitrary codimension work satisfactorily for 

evolving infinite (or closed) curves in 3ℜ , but not for 
evolving open ended curves in 2D. 
 

2. BACKGROUND 
 
For an evolving parameterized closed curve 

2]1,0[:),( ℜ→× ttsC , where ),1(),0( tCtC = , the level set 

method and in particular the motion by mean curvature of 
Osher and Sethian [10,12] defines a 2D Lipschitz level set 

function ),,( tyxφ , ℜ→×ℜ ),0[: 2 tφ , over the plane of 

interest, such that at each instant 
}0),,(|),{(),( == tyxyxtsC φ  defines the zero-level set of 

φ . The PDE describing the evolution of φ  is given by 

( ) φφ ∇−= tsvt , , where ( )tsv ,  is the speed of zero level set 

of φ  in the normal direction. A common choice for φ  is a 

function that is defined positive (or negative) inside the 
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closed curve, and negative (or positive) outside it, so that the 
curve lies at the zero crossing (or zero level set) of the 
function. 

The straightforward extension of this signed level set 
function to open ended curves in 2D is not possible due to 
the absence of the inside-outside dichotomy for open ended 
curves. There exist several problems with evolving a level 
set function φ  for which the zero level set is not a zero 

crossing of the function. Numerical errors may accumulate, 
and it may be numerically infeasible to calculate the gradient 
at the zero level set due to singularities or to locate the zero 
magnitude points. For image processing applications, such 
instability may preclude segmentation. Also, the notion of 
mean curvature motion is undefined in the case of open 
curves as curvature itself is undefined at the endpoints of the 
open curve. Clearly, a new method of implicitly representing 
the open ended curve in a level set framework is 
necessitated. 
 

3. PROPOSED MODEL 
 
We define the centerline of a closed contour as the largest 
connected component remaining after removing the 
branches of the medial axis [2] corresponding to the closed 
contour. 

The proposed model derives the open ended curve from 
the centerline of the level set contour of a function (named 
as the curvature map) defined on the curve. The level set is 
allowed to undergo a mean curvature motion, which 
approximately evolves the centerline of the level set 
according to the curvature between the end points and 
elongates the centerline at the end points in a tangential 
direction. The elongated centerline is taken as the updated 
position of the curve, and the calculations are repeated to 
determine the subsequent positions of the curve. 

 
                             (a)                                     (b)    
Fig. 1: (a) An open ended curve; (b) Scalar distance function δ  of 
curve in (a). Lighter intensity indicates greater distance.  
 

Let us consider an open ended curve 2]1,0[:)( ℜ→sC , 

where )1()0( CC ≠  (see Fig. 1(a)). Let δ  be the scalar 

distance function ( )1|| =∇δ  to the open curve )(sC  (e.g., 

Fig. 1(b)). We construct a regularized and smoothed 
gradient field of δ  by employing δ  as the edge map in a 

minimization functional and call it G  (the minimization 
functional is similar to that used for computing gradient 
vector flow (GVF) in [12]) (see Fig. 2). 

We now define a curvature map Ψ  as the square of the 

divergence of G  i.e., 2)( G∇=Ψ . When the curve is not 

smooth or has sharp turns, δ∇  and consequently G  may 
have sharp discontinuities developing at some distance from 
the curve, thus giving high Ψ  values at regions far from the 
curve. To mitigate this effect, we multiply Ψ  with 

( )εδ −H , where H  is the Heavyside function and ε  is the 

distance from the open curve outside of which we want the 
curvature map to be zero. The product is the modified 

curvature map ( )Ψ−=Ψ εδHˆ  as shown in Fig. 3(a).  

 

 
Fig. 2: The regularized gradient vector field G  of the scalar 
distance function δ  corresponding to Fig. 1(b) (only a portion of 
the open curve is magnified for visualization).  
 

The absolute value of the divergence of the regularized 

gradient vector field G  is low along the middle portions of 
the curve (since the curvature of the level sets of δ  is 
relatively low there) but is high around the endpoints of the 
curve (since the curvature of the level sets of δ  is much 

high there). Thus the level sets of the curvature map Ψ̂  have 
a flat ribbon-shaped middle portion but dumbbell-shaped 
protrusions at the ends (Fig. 3(b)). We now represent our 

 
       (a)                                    (b)             

Fig. 3: (a) The (0-1) normalized curvature map Ψ  of the 

regularized gradient vector field G  of Fig. 2. Lighter shades 

indicate values closer to 1; (b) Centerline of the μ -level set of Ψ̂  

( )1.0=μ  of (a). 
 

original curve as the centerline of the μ - level set of Ψ̂  

(Fig. 3(b)). It is evident from the symmetry of the level sets 
of δ  about the curve and the symmetry preserving 

regularization process used to construct G  (and hence Ψ̂ ) 

that the level sets of Ψ̂  is symmetric about the original 

curve, thus the centerline of the level set of Ψ̂  gives back 
the original curve (fig 1(e).). We initialize a characteristic 

function Γ  of the μ -level set of Ψ̂  such that ( )yx,Γ  is 1 if 
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),( yx  is on or inside the Ψ− ˆofset levelμ  and 0 if 

),( yx is outside as in Fig. 4(a). 

Our aim is to elongate the open ended curve, and we 
note that evolving the boundary of Γ  according to the mean 
curvature would dilate the regions of low curvature of the 
μ -level set (this region is in the middle of the level set as 

shown in Fig. 4(a)) but would restrict dilation of the dumb-
bell shaped ends that have a high curvature. Isotropic 
diffusion with intermediate re-initialization of Γ  amounts to 
a mean curvature motion of the boundary of Γ  along the 
normal direction to the boundary [9]. Therefore, the update 

for Γ  is given by Γ∇=
∂

Γ∂ 2

t
. 

 
                  (a)                           (b)                                         (c) 

Fig. 4: (a) The characteristic function Γ  of μ -level set of Ψ̂  

( )1.0=μ  of Fig. 3(a); (b) Updated Γ  after convolving Γ  of Fig. 
3(b) with a Gaussian kernel; (c) The centerline of the boundary of 
the updated Γ  of (b). 

Also, since our open curve will be evolving in the 2D 
image, we incorporate image constraints. We may assume 
that the 1D structures have an average intensity that is in 
contrast to the average intensity of the background. Hence, 
we define a coefficient called the coefficient of intensity 
difference  defined at every position ),( yx  of the image I 

as  

( , )

( , )

1
( , )

( , )

0.1 ( , )
p

x y I
p

x y I

x y
I x y dxdy

I x y
dxdy

∈

∈

=
Γ

+ −
Γ

     (1) 

where the intensity value of the image I at location p is given 
by pI . It can be observed from (1) that ),( yx  takes a 

higher value when the intensity of the point (x, y) approaches 
the average intensity value inside the characteristic function. 
Similarly, the familiar anisotropic diffusion coefficient [7] 
℘  can also be defined at every image point as 

|),(|1.0

1
),(

yxI
yx

p∇+
=℘ . 

If we initialize an open ended curve inside a 1D 
filamentous structure, the characteristic function Γ  
undergoes an isotropic diffusion by convolving it with a 
Gaussian kernel of standard deviation K [9]. We thus re-
initialize the diffused Γ  as 

≥∗Γ℘
=Γ − otherwise0

)(if1 λK
dinitializere ,        (2) 

where λ  is a user defined parameter and * denotes 
convolution. In (2), the product term ℘  takes a very low 

value at the edges of the filament (since ℘  is low here) as 

well as areas that are just outside the boundary of the 
filament (  is low here due to high difference between the 
average intensity inside Γ  and the intensity of the area just 
outside the boundary of Γ ). Hence, pre-multiplying the 
diffused Γ  with ℘  negates the effects of the diffusion in 

areas that are just at the edges or just outside the boundary 
of the filament. Thus the re-initialized Γ  stays inside the 
filament that we are attempting to segment. 

The boundary of Γ  where the middle ribbon band joins 
the dumbbell shaped protrusions possesses high curvature. 
This region is smoothed more vigorously compared to the 
other locations in the boundary of Γ  where curvature is 
relatively smaller (such as the middle ribbon portion or the 
rounded portions of the dumbbell). So in effect, the mean 
curvature motion of the boundary of Γ  performs a 
differential flattening of the boundary depending on the 
curvature, consequently elongating its centerline. Fig. 4(b) 
shows the re-initialized Γ  after applying (2), and Fig 4(c) 
shows the updated centerline of the re-initialized Γ . 

 
4. RESULTS AND CONCLUSIONS  

 
We present results of applying this model of implicit 
evolution of open ended curves to synthetic and real images. 
These images exhibit 1D filamentous structures for which 
traditional closed contour models are not practical. In each 
case an initial approximately linear segment is placed in the 
object to be tracked.  

 
The proposed approach is evaluated using a simulated 

road with a bifurcation. The result of evolution of the open 
curve after 1, 3, 7 and 14 iterations are shown in Fig. 5. Fig. 
6 shows application of (2) to identify the thin black river in 
the satellite image taken from PAN/5.5m spatial resolution 

  
(a)                         (b) 

  
(c)                         (d) 

Fig. 5: (a)-(d) Results of topology-adaptive synthetic road 
tracking application using (2) after 1, 3, 7 and 14 iterations 
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images of IRS 1C satellite. Application of (2) to identify an 
artery in a MRI of the human brain is shown in Fig. 7. 

 

 
It should be noted from the examples that the proposed 

curve evolution model survives shape distortions or 
discontinuities of the filament edges. The evolution 
technique can also adapt to local topologies, as in the case of 
dividing and following two different branches of the 
simulated road in Fig. 5. It can also follow extreme 
bending/twisting of the 1D structures as is evident from the 
MR image example in Fig. 7. 

 
Table I: Extent of elongation and bending of the open curve in 

tracking synthetic/real images. 
Image set % Elongation Maximum 

Bending 
(degrees) 

% RMSE 
pixel error 

Fork road 525 30 3 
River 1 1360 105 8 
Artery 1 840 360 30 
River 2 400 45 10 
River 3 540 20 10 
River 4 1360 105 11 
River 5 675 175 6 
River 6 600 77 4 
Artery 2 350 89 2 

 
Table I shows the numerical accuracy of the approach. 

We have compared the centerline (after manual 

segmentation and removing forks and H-junctions) for nine 
applications (both real and simulated images of 
roads/rivers/arteries). On average, the proposed 
segmentation agrees with the manual segmentation within a 
mean RMSE pixel error of 9%. 

We have introduced a solution for evolving an open 
ended curve in a 2D image plane. This approach yields an 
implicit representation of open curves in a 2D plane and is 
particularly suitable for tracking or segmenting 1D 
filamentous structures in the 2D images. 
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         (a)               (b)                (c)                  (d)     
Fig. 7: (a)-(d) Result of applying (2) to an MRI 
image of an artery. The artery tracking is shown after 
1, 6, 22 and 36 iterations. 

  
(a)                             (b) 

 
                            (c)                           (d)   
Fig. 6: (a)-(d) Result of applying (7) to a satellite image to 
track a river after 1, 8, 16, 32 iterations. 
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