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ABSTRACT

We propose a framework to learn statistical shape models for
faces as piecewise linear models. Specifically, our methodol-
ogy builds upon primitive active shape models(ASM) to han-
dle large scale variation in shapes and appearances of faces.
Non-linearities in shape manifold arising due to large head
rotation cannot be accurately modeled using ASM. Moreover
overly general image descriptor causes the cost function to
have multiple local minima which in turn degrades the qual-
ity of shape registration. We propose to use multiple overlap-
ping subspaces with more discriminative local image descrip-
tors to capture larger variance occurring in the data set. We
also apply techniques to learn distance metric for enhancing
similarity of descriptors belonging to the same class of shape
subspace. Our generic algorithm can be applied to large scale
shape analysis and registration.

Index Terms— Active Shape Models, SIFT, Relevance
Component Analysis, Anderson Darling Statistics

1. INTRODUCTION

Recent research in shape analysis and registration have pro-
posed improved methodologies for searching in highly non-
linear Riemannian manifold for the globally optimal shape.
Whereas [1, 2] have used sampling based techniques to opti-
mize regularized shape matching cost function, [3] have pro-
posed improved continuous shape regularization for more sta-
ble and optimal solution. In this work we propose several im-
provements over the past shape registration techniques. Un-
like previous works, shape analysis is not performed in the
common tangent space. This removes the restriction that all
shapes should be in the vicinity of the mean shape. In addi-
tion, we propose a framework to learn non-linear shape man-
ifold as overlapping subspaces. In this respect our work fol-
lows from [4, 5]. The number of clusters is learned directly
from the data using normality test for clusters [6]. Finally we
improve upon the likelihood function by using more discrim-
inative descriptors and a learned distance metric to enhance
correlation between features belonging to the same shape clus-
ter [7]. We demonstrate the algorithm on the face alignment
problem by accurately localizing faces with shapes that are
far from the mean shape in the shape space.
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Fig. 1. 3D isomap embeddings for the tracked shapes of a full
profile head movement(right turn followed be full left turn
and back). The intrinsic non-linearity of the shape manifold
makes linear models ineffective in dealing with large varia-
tions. The marked frame numbers are shown in the top row.

2. LEARNING NON-LINEAR SHAPE MANIFOLD

The active shape learning has been formulated as the posterior
optimization with the global prior shape model and the local
image likelihood model. For the shapes S learned as a set
of N landmark point locations S = {x1, y1, · · · , xN , yN}, a
PCA subspace is learned that captures the relevant variance in
shapes (95%) by projecting the data set onto eigenvectors P

with largest eigenvalues

X = X̄ + P ∗ b + ε (1)

where X = Φ(S), Φ being the linear transformation for
global scaling, translation, rotation and linearizing the shape.
Planar shape distribution lies on highly non-linear Rieman-
nian manifold. Fig. 1 shows an isomap embedding in 3D
of the tracked shapes across a full head rotation 1. The dis-
tance metric on the non-linear manifold is approximated as
procrustes distance by projecting the shapes onto the tangent
plane of the mean shape. The shape model learned in the
tangent space is an accurate representation of the shapes in
the vicinity of the mean shape X̄. However for the shapes
far away from the mean shape, the large scaling (fig 2(left))
of the shape vectors causes the learned PCA subspace to dis-
tort and generate unrealistic shapes. Kernel methods [8] tar-

1video http://www.cs.rutgers.edu/∼kanaujia/Data/Video.zip
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Fig. 2. (Left) The shape X1 is projected to tangent space by
rescaling as X1/(X1 • X̄). For shapes (X1) farther of X̄, the
rescaling causes unrealistically large variance in the tangent
space thereby distorting the PCA subspace. Right The SIFT
descriptor is computed over a patch along the normal vector
at the landmark.

get this problem by projecting the shapes into features space
where linear methods can be applied. These methods suffer
from two principal drawbacks that prevent their applications
to large scale shape analysis. Firstly kernel methods are in-
clined to overfitting due to more parameters and hence are not
robust to outliers. Secondly kernel methods require pre-image
mapping for projecting the shapes back from the feature space
to the image space. This introduces additional inaccuracies in
the shape model.

2.1. Preserving Non-linearity in Shapes

To address this problem for large set of shapes, we propose to
learn the non-linear shape manifold as multiple overlapping
linear subspaces. The original shapes are first projected to a
global tangent space (fig. 2) so that the euclidean distance
can be used for clustering. The shapes are aligned to a ref-
erence shape iteratively by computing Φi(S) = γRS + T

where the γ is the scaling factor, R and T as the rotation and
the translation matrices respectively. The aligned shapes are
clustered using Gaussian Mixture Model. Based on the class
resposibilites in the tangent space, the original shapes are
grouped into multiple clusters with subspaces learned within
each cluster independently.

In order to ensure smooth manifold during shape search,
adjacent subspaces should overlap sufficiently. The amount
of overlap can be controlled by variance flooring during the
EM algorithm for clustering the data set. In addition we arti-
ficially add 15% of cluster points from the neighboring clus-
ters. This overlapping in the global tangent space ensures that
shapes in the original image space generate overlapping linear
subspaces.

2.2. Learning Number of Clusters

Key to good cluster model holds in choosing the number of
clusters (to avoid oversized or undersized clusters) which is a
hard algorithmic problem and is usually done by cross-validation.
However for shape analysis, it is also difficult to determine
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Fig. 3. Anderson Darling(AD
2) statistics for the clusters for

the iterations 1, 2 and 3. The cluster centers are split if the
AD

2 statistics is greater than the critical threshold (based on
the desired significance level). The final result is as shown in
fig. 5. Only the first two principal components are shown

the optimal number of clusters due to absence of any reli-
able evaluation technique. Moreover, learning a linear PCA
model in the cluster entails shapes to have gaussian distri-
bution. We determine optimal number of clusters based on
normality statistics of the cluster distribution. A number of
goodness-of-fit tests exist for gaussian distribution e.g.
Komolgorov-Smirnov, Anderson-Darling, Shipiro-Wilk and
Von Mises. The most popular normality test is Anderson-
Darling (AD

2) that determines when it is unlikely that the
current data is not generated from the gaussian distribution.
The AD

2 test is a 1D normality test and uses empirical cu-
mulative distribution function(CDF) to compute the statistics
AD

2 of N shapes projected onto 1D vector V that preserves
the intrinsic structure of the data. The vector V is obtained
as the line joining 2 centers obtained by running 2 cluster k-
means on the data. The projected shapes are ordered accord-
ing to the scalars 〈Xi,V〉/‖V‖ = wi.

AD
2(ψ) = −N −

(
1
N

)∑N

i=1(2i− 1) ∗ {ln(ψ( (wi−μ)
σ

))

+ln(1 − ψ(
(wN−i+1 − μ)

σ
))} (2)

where ψ(x) = 1
2{1+erf(x−μ

σ
)} is the normal CDF. This test

need to be modified for small samples as AD
2
m = AD

2{1+
0.75
N

+ 2.25
N

} The test compares the AD
2
m statistics against the

standard critical values AD
2
crit = {0.631, 0.752, 0.873, 1.035}

depending upon the corresponding desired significance level
α = {0.1, 0.05, 0.025, 0.01} and rejects the hypothesis that
the distribution is normal if the value exceeds the critical value.
In our experiments we used α = 0.01 with critical value
1.035. The algorithm starts from a single center and iter-
atively splits the centers until it becomes unlikely that the
current distribution is not a gaussian. Fig. 3 shows the it-
erative splitting along with the AD

2
m test statistics for each

cluster(computed by splitting the cluster). The split centers of
the clusters with AD

2
m statistics larger than the critical values

are retained in the next iteration. The final clusters shown in
fig. 5 are obtained by further splitting clusters (fig. 3(right))
that are not gaussian.

2.3. Image Likelihood

The image likelihood P (I|X,M) is modeled as the proba-
bility of local descriptors at the landmark points conditioned
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Fig. 4. (Left) Gradient profile matching cost of a landmark
point over a window of size 19x19. Notice the multiple min-
ima resulting in poor alignment of shapes. (Right) SIFT de-
scriptor matching cost for the same landmark point

on the learned models M (the shape and the local descriptor
models). With the prior shape model P (X |M) the posterior
can be expressed as

P (X |I,M) ∝ P (I|X,M) ∗ P (X |M) (3)

The posterior maximization however suffers from the diffi-
culty of getting stuck at local minima. A number of works
exist that try to alleviate this problem by either sampling from
the prior and evaluating the likelihood[1, 2] or improving the
shape regularization methods[3]. We adopt simpler approach
to improve the likelihood model by using more discrimina-
tive SIFT(scale invariant feature transform) descriptors that
are distinctive enough to differentiate between landmarks, in
order to avoid multiple minima and yet invariant to within-
class variations. SIFT descriptors encodes the internal gradi-
ent information of a patch around the landmarks thus captur-
ing essential spatial position and edge orientation information
of the landmark. Quantizing gradient orientations into dis-
crete values in small spatial cells and normalizing these dis-
tributions over local blocks makes the descriptor invariant to
affine changes in illumination and contrast. The descriptors
are computed over a grid of cells and the vector of the his-
togram values is normalized by L2-norm computed over the
entire block. In order to make the descriptor rotation invari-
ant, the gradient orientations are always computed relative to
the normal vector (fig. 2 (right)) at the landmark point. Un-
like the gradient profile cost function, that has multiple min-
ima (fig. 4), the SIFT matching cost function is remarkably
unimodal.

2.4. Distance Metric Learning

The local descriptors tend to be highly correlated for a par-
ticular viewpoint e.g. SIFT descriptors for landmarks on the
outer contour for a frontal face differ markedly from the pro-
file face. Local image descriptors of the shapes belonging
to the same cluster cannot be used for learning the likeli-
hood model as small clusters may be too restrictive and hin-
der the shape search. On the other hand using all the data
points may generate extraneous variance in the training also
causing inaccuracies. Instead, we apply an alternate strategy
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Fig. 5. Trajectory showing search for the optimal shape across
clusters. The red circles denote the frames in the top row

to selectively downweight values of spatial cells by learning
full rank Mahalanobis metric in the descriptor space using
Relevance Component Analysis(RCA). RCA downscales the
global variance and enhances similarity between descriptors
belonging to the same shape cluster, by giving larger weights
to the relevant cells of the SIFT blocks. It finds independent
linear mappings f : Ωi(S) → [Yi = Ai ∗ Ωi(S)] that maxi-
mizes the mutual information I(Ωi(S),Yi) between Yi and
Ωi(S)(the SIFT descriptors for the ith landmark of shape S).
For M shape clusters, we compute the reweighings Ai that
minimizes within class variance

minAT

i
Ai

1

N

M∑

j=1

Nj∑

k=1

‖Ωi(Sjk)−Ωi,j(S)‖AT

i
Ai

s.t. |AT
i Ai| ≥ 1

(4)
Ωi,j(S) is the mean of descriptors for cluster j. The reweighted
descriptors are used to learn the appearance for landmarks.
——

Fig. 6. Fitting the Profile Shape

2.5. Shape Search

The aligned shape is obtained by maximizing the posterior(3)
by either EM algorithm [3, 9] or sampling from the distri-
bution and evaluating the likelihood[2, 1]. These methods
cannot be applied to our framework as the cluster based prior
shape model does not have a functional form. Since the shapes
do not lie on a common tangent space, the euclidean metric
cannot be used to compare shapes. We maximize the poste-
rior using alternating optimization of likelihood by sampling
along the normal of the landmarks followed by shape regular-
ization using the cluster based prior model. The shape regu-
larization is done as follows - (1) project the shape onto global
tangent space and compute class conditionals, (2) project the
shape to local tangent space of the cluster with maximum
likelihood and constrain the shape to lie within its subspace.
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Fig. 7. (Top) Facial feature localization using ASM with gradient profiles. (Bottom)Localization using local descriptors as SIFT
features. Notice the accurate localization of eye features due to SIFT descriptors

The overlapping between the clusters ensures smooth traver-
sal across subspaces during search. Fig. 5 illustrates the al-
gorithm showing the trajectory of the shape search and fig. 6
shows the iterative steps for fitting shape to a profile face.

3. EVALUATION

The prior ASM model is learned using 1029 labeled images
(79 landmark points) in various head poses. We use coarse-
to-fine search over 4 levels of gaussian scale pyramid. The
SIFT block contained 4x4 cells with 4x4 pixels and 8 gra-
dient orientation bins thus having descriptor size 128. The
orientation quantization was done using angular interpolation
with cutoff value as 0.2 to minimize the effect of extreme
non-linear illumination changes. We tested on 342 unseen
images spanning 3 category of poses - Left facing, Frontal
and Right facing. Table 1 compares the average errors in pix-
els. The likelihood function enables more accurate alignment
compared to the gradient profile used in conventional ASM.
The RCA improves the alignment accuracy for the left and
right facing poses. Fig. 7 provides qualitative comparisons of
shape registration in extreme conditions of illumination and
skin color. The SIFT descriptors are not only robust to varia-
tions in skin color, that are common among subjects, but also
to the changes in illumination.

Algorithm Frontal Left Right
Gradient profile 10.24 12.46 11.89

SIFT Descr. 7.09 10.11 9.13
SIFT Descr. + RCA 8.14 8.93 7.76

Table 1. Average errors in pixels for different algorithms.

4. CONCLUSION

In this work 2 we have advocated use of cluster based ap-
proach to learn non-linear shape manifold. This combined

2Protected by patenting and trademarking office (provisional patent
#60/874,451). No part of this technology may be reproduced or displayed
in any form without the prior written permission of the authors

with the robust likelihood function allows us to scale the face
registration algorithms to larger database having more varia-
tion in shapes and appearance. Empirically we observed that
the system improves the accuracy of shape alignment and pro-
vides a groundwork for a generic shape registration frame-
work.
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