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ABSTRACT

A fast and memory-efficient method is presented for dynamic
mean shift (DMS) algorithm, which is an iterative mode-seek-
ing algorithm. The DMS algorithm requires a large amount
of memory to run because it dynamically updates all samples
during the iterations. Therefore, it is difficult to use the DMS
for clustering a large set of samples. The difficulty of the
DMS is solved by partitioning a set of samples into subsets
hierarchically, and the resultant procedure is called the hier-
archically distributed DMS (HDDMS). Experimental results
on image segmentation show that the HDDMS requires less
memory than that of the DMS.

Index Terms— mean shift, dynamic mean shift, cluster-
ing, image segmentation, stochastic matrix

1. INTRODUCTION

Mean shift (MS) algorithm [1] is an iterative mode-seeking
algorithm, which is widely used in image processing, pat-
tern recognition and computer vision fields. The MS algo-
rithm originated with Fukunaga et al. [2]. Cheng [3] applied
MS to clustering and Hough transform. Comaniciu and Meer
[1] applied MS to clustering, image segmentation and image
smoothing. Fashing and Tomasi [4] proved that MS proce-
dure is a quadratic bound optimization. Carreira-Perpiñán
[5] showed that Gaussian MS is an EM algorithm. Li et
al.[6] proposed anisotropic MS and proved its convergence.
In computer vision community, MS is applied to object track-
ing [7, 8, 9].

Recentry, Zhang et al. [10] proposed dynamic MS (DMS),
which dynamically updates sample set during the iterations,
and improved the convergence speed of MS. They also proved
that both MS and DMS converge to the same solution when
the data is locally Gaussian. Carreira-Perpiñán [11] proposed
Gaussian blurring MS (GBMS), which is similar to Zhang’s
DMS [10]. Carreira-Perpiñán [11] pointed out that the typical
behavior of DMS or GBMS consists of two phases. That is,
in the first phase, points merge into extremely compact clus-
ters, and in the second phase, these clusters approach to each
other till they merge at a single point. He proposed a stopping
criterion that stops the algorithm just after the first phase. The
stopping criterion is also used in this paper.

Although DMS improves the convergence speed of MS, it
needs a large amount of memory to run because DMS moves
all samples during the iterations. Therefore, it is still difficult
for DMS to handle large size data which exceed the mem-
ory capacity of machine. In this paper, we propose a fast and
memory-efficient method for DMS. The proposed method is
derived from the relationship between DMS and a stochas-
tic matrix. In the derivation, DMS iteration is understood as
a fixed point iteration. The proposed method distributes sam-
ples into mutually disjoint subsets hierarchically, and is called
hierarchically distributed DMS (HDDMS).

Boutsinas and Gnardellis [12] presented a methodology
for distributing clustering process, which is called the proseg-
gisis methodology. However, their methodology is not hierar-
chical, and so the scalability is limited.

The rest of this paper is organized as follows: we sum-
marize DMS and show the relationship between DMS and a
stochastic matrix in section 2. In section 3, we propose hierar-
chically distributed DMS (HDDMS) algorithm. Experimental
results on image segmentation are shown in section 4. Finally,
we give concluding remarks and a discussion of future work
in section 5.

2. DYNAMIC MEAN SHIFT

Let ���� ���� ��� be a set of samples in the �-dimensional space
�
� , and let ���� ���� ��� be the corresponding weights. Then

the �����-th iteration of dynamic mean shift (DMS) [10, 11]
algorithm can be written as follows:
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iteration, collapsed samples are reduced to a single sample.
Specifically, if ������ � �

���
� � � � for a constant � � � and

� � �, then we renew �
���
� to ����� � �
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� and delete ����� and
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for 
 � � and	��� is the entropy of the normalized histogram
of ����� � ���� �

���
� . Details are found in Ref. [11].

Property 1 Let  ��� � ��
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�� � � ����� ��������	��. Then

 ��� is a stochastic matrix, i.e., ������ � � and
��
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Proof. The �-th column of  ��� may be written as
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�� � �, it follows that ������ � �. From

Eq. (2), we have ����
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and  ������� � ���� hold. Then � ��������� � ��������.
That is, the weighted mean of samples with weights ���� is a
fixed point of DMS iteration.
Proof. From Eq. (3) and property 1, we have

���������� � ��������� ��������	������
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Consider a Markov chain defined by the stochastic matrix
 ���. If the set of samples forms several clusters, then the
corresponding Markov chain is also decomposable into sev-
eral essential sets approximately. Thus, the above properties
hold for each cluster separately. Property 2 implies that the
samples in a cluster move toward a fixed point (or a weighted
mean) and collapse into it. That is, DMS algorithm estimates
the local modes of a density function as the means of samples
weighted by the stationary probabilities of stochastic matri-
ces.

3. HIERARCHICALLY DISTRIBUTED DYNAMIC
MEAN SHIFT

Let � be a weighted mean of � � ���� ���� ��� with nonnega-
tive weights � � ���� ���� ���

� normalized as
��

��� �� � �:
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Let ��� ���� �� be the mutually disjoint subsets of ��� ���� ��.
Then we may write Eq. (6) as
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where 
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�����
��. Equation
(7) indicates that � can be computed as the weighted mean of
�
��� ���� 
��� with weights �
��� ���� 
���. Further, we expand
each 
�� as � in Eq. (7). Repeating this expansion hierarchi-
cally, we have
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where � is the number of levels in the tree structure, � � is
the number of mutually disjoint subsets or nodes in �-th level,

�
���	


	�����
��

is the ��-th weighted mean in the ��-th subset on
the �-th level in the ����-th subset on the �� � �	-th level � � �

in the ��-th subset on the first level, and 
�
���	


	�����
��

is its
weight.

The algorithmic procedure of hierarchically distributed DMS
(HDDMS) is summarized as follows:
[HDDMS algorithm]
Step 1: Distribute a set of samples into mutually disjoint sub-
sets hierarchically and construct the tree structure of them.
Step 2: Execute the DMS algorithm at each node from leaf
nodes to root node.
Step 3: Output local modes obtained at root node.

The amount of memory required in the HDDMS algo-
rithm is �����

��

�����	
�	, and the computational cost in

multiplications is������
��

�����	
�
��		, where 
��	 is the

maximal number of iterations. On the other hand, the required
memory and the computational cost in DMS are ����	 and
�����
��		, respectively.

4. EXPERIMENTS

In this section, we compare the performance of DMS, HD-
DMS and DDMS which is a special case of HDDMS for
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Fig. 1. Cameraman image (���� ��� pixels).
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Fig. 2. PSNR.

� � �. DDMS is a proseggisis methodological [12] im-
plementation of DMS. An original image shown in Fig. 1 is
rescaled from ��� �� pixels to ��� �� pixels and segmented
using the three algorithms. Segments are obtained by cluster-
ing pixels in the joint spatial-range domain [1]. Peak signal-
to-noise ratio defined by

��	
 � �� ����
����

��
(9)

is shown in Fig. 2, where �� � �
�

�
�

�����
�����	

�

���	

�

��

and ��	

�

� �
�����	

�

indicate the outputs of DMS, (H)DDMS
algorithms respectively. Figure 2 shows that the output im-
ages of DDMS and HDDMS are similar to that of DMS.
The values of PSNR are about 30 dB. It should be noted
that DMS fails to segment images of more than ��� �� pix-
els because of the out of memory error. Zhang et al. [10]
showed the results of image segmentation with ��� � ���
pixels. However, they only used a set of representative sam-
ples instead of using all the samples or pixels. Segmen-
tation results are shown in Fig. 3. Output images by DMS,
DDMS and HDDMS shown in Fig. 3(b), (c) and (d) respec-
tively are similar to each other. CPU time is shown in Fig. 4.
DDMS and HDDMS are much faster than DMS, especially
for larger images. All codes are written in MATLAB and run
on a PC with Pentium 4 CPU 3.40GHz, 2.00GB RAM. We

(a) (b)

(c) (d)

Fig. 3. Segmentation results: (a) input image (����� pixels),
(b) DMS, (c) DDMS and (d) HDDMS.
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Fig. 4. CPU time.

set � � ������ � � ����� Æ � ����. In DDMS, we set
� � �	
�� for � � ���. In HDDMS, we construct a binary
tree and restrict the maximum number of elements in each
disjoint subset to � � ���.

Another example image shown in Fig. 5 is rescaled from
���� ��� to ����� ���� and segmented using DDMS and
HDDMS. CPU time is shown in Fig. 6. Although DDMS fails
to segment images of more than ���� ��� pixels because of
the out of memory error, HDDMS can segment all images.
Segmented images by HDDMS are shown in Fig. 7.

5. CONCLUSION

In this paper, a fast and memory-efficient algorithm has been
proposed for dynamic mean shift (DMS) algorithm. The pro-
posed algorithm distributes a dataset into mutually disjoint
subsets hierarchically and constructs a tree structure of the
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Fig. 5. Mandrill image (���� ��� pixels).
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dataset. A bottom-up approach on the tree structure enables
us to segment large-sized images. Moreover, a relationship
between the DMS algorithm and a stochastic matrix is also
shown. This relation suggests the connection between DMS
and spectral clustering [13, 14, 15], in which left eigenvectors
of a stochastic matrix are used. Application of the proposed
algorithm to anisotropic DMS is future work.
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