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ABSTRACT

In this paper we propose a new method for variational seg-
mentation of image sequences containing nonrigid, moving
objects. The method is based on the Chan-Vese model aug-
mented with a novel frame-to-frame interaction term, which
allow us to update the segmentation result from one image
frame to the next using the previous segmentation result as a
shape prior. The interaction term is constructed to be pose-
invariant and to allow moderate deformations in shape. It
can handle the appearance of occlusions which otherwise can
make segmentation fail. The performance of the model is
illustrated with experiments on synthetic and real image se-
quences.

Index Terms— Segmentation, image sequences, varia-
tional active contours, shape priors, level set methods.

1. INTRODUCTION

We address the problem of segmentation in image sequences
using region-based active contours and level set methods. Seg-
mentation is a fundamental and difficult process in computer
vision whose purpose is to divide a given image into one or
several meaningful regions or objects. When applied to im-
age sequences the process becomes more complex because
the objects to be segmented may now be moving from frame
to frame, change shape, and encounter various occluding ob-
jects along the way. This puts additional constraints on the
segmentation process.

Segmentation models based on variational formulations
of active contours have been applied successfully to many
problems. Such methods may be either boundary-based, such
as geodesic active contours [1], or region-based, such as Chan-
Vese models [2], or combinations thereof. However, active
contour-based methods may fail due to noise, clutter and oc-
clusion. In order to make the segmentation process robust
against these effects, it has been proposed to incorporate shape
priors into the segmentation process. In recent years, many re-
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searchers have successfully introduced shape priors into seg-
mentation methods such as in [3, 4, 5, 6, 7].

When segmenting nonrigid moving objects in image se-
quences, appropriate segmentation methods, which can deal
with motion and shape deformations, should be used. The ap-
plication of active contour methods for segmentation in image
sequences gives promising results as in [8, 9]. These methods
use variants of the classical Chan-Vese model as the basis for
segmentation. In [8], for instance, it is proposed to simply use
the result from one image as an initializer in the segmentation
of the next.

In this paper we propose and analyze a novel variational
segmentation method for image sequences, based on mini-
mizing an energy functional containing the standard Chan-
Vese functional, as one part, and an interaction term which
penalizes the deviations from the previous shape, as a sec-
ond part. The interaction term is defined using a transformed
distance map to the previous contour, where different trans-
formation groups, such as Euclidean, similarity or affine, can
be used depending on the particular application.

2. THEORETICAL BACKGROUND

2.1. Region-Based Segmentation

We begin with a brief review of the classical Chan-Vese seg-
mentation model [2]. A gray-scale image is considered to be
a real valued function I : D → R defined on the image do-
main D ⊂ R

2, usually a rectangle. A point x ∈ D is often
referred to as a pixel, and the function value I = I(x) as the
pixel value, or the gray-scale value. The Chan-Vese model is
an active contour model in which the idea is to find a contour
Γ (a finite union of disjoint, simple, closed curves) such that
the image I is optimally approximated by a single gray-scale
value μint on int(Γ), the inside of Γ, and by another gray-
scale value μext on ext(Γ), the outside of Γ. The optimal
contour Γ∗ and the corresponding pair of optimal gray-scale
values μ

∗ = (μ∗

int, μ
∗

ext) are defined as the solution of the
variational problem,

ECV (μ
∗,Γ∗) = min

μ,Γ
ECV (μ,Γ), (1)
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where ECV is the well-known Chan-Vese functional,

ECV (μ,Γ) = α|Γ|+β

{
1

2

∫
int(Γ)

(I(x) − μint)
2 dx+

+
1

2

∫
ext(Γ)

(I(x) − μext)
2 dx

}
.

(2)

Here |Γ| is the arc length of the contour, and α, β > 0 are
weight parameters.

For any fixed contour Γ, it can be shown that the best
choice of the gray-scale values μ = (μint, μext) are the mean
values of the pixel values inside and the outside Γ, respec-
tively:

μint = μint(Γ) =
1

| int(Γ)|

∫
int(Γ)

I(x) dx, (3)

μext = μext(Γ) =
1

| ext(Γ)|

∫
ext(Γ)

I(x) dx. (4)

Here the symbol |.| denotes the area. If we introduce the so-
called “reduced” Chan-Vese functional

ER
CV (Γ) := ECV (μ(Γ),Γ), (5)

then the optimal contour Γ∗ can be found by solving the sim-
pler minimization problem

ER
CV (Γ

∗) = min
Γ

ER
CV (Γ). (6)

Once Γ∗ is found we have μ
∗ = μ(Γ∗). The minimization

problem in (6) is solved using a gradient descent procedure in
the level set framework, as described in the next section.

2.2. Gradient Descent using the Level Set Method

If a contour Γ is represented as the zero level set of a function
φ : R

2 → R as Γ = {x ∈ R
2 ; φ(x) = 0}, then the sets

int(Γ) = {x ; φ(x) < 0} and ext(Γ) = {x ; φ(x) ≥ 0}
are the inside and the outside of Γ, respectively. Geometric
quantities such as the outward unit normal n and the curvature
κ can be expressed in terms of φ as n = ∇φ/|∇φ| and κ =
∇ ·

(
∇φ/|∇φ|

)
. The function φ is usually called the level set

function for Γ, cf. e.g. [10].
A curve evolution, i.e. a mapping t �→ Γ(t), can be repre-

sented by a time dependent level set function φ : R2 × R →
R as Γ(t) = {x ∈ R

2 ; φ(x, t) = 0}. The normal velocity
of t �→ Γ(t) is the scalar function dΓ/dt defined by

d

dt
Γ(t)(x) := −

∂φ(x, t)/∂t

|∇φ(x, t)|
(x ∈ Γ(t)). (7)

The gradient descent flow for the problem of minimizing a
functional E(Γ) is the solution to the initial value problem:

d

dt
Γ(t) = −∇E(Γ(t)), Γ(0) = Γ0, (8)

where Γ0 is an initial contour specified by the user. Here
∇E(Γ) is the so-called L2-gradient (or shape gradient) of the
energy functional E(Γ), cf. e.g. [11] for definitions of these
notions. In the case of ER

CV the L2-gradient is in (5) is

∇ER
CV (Γ) = ακ+ β

[1
2
(I − μint(Γ))

2 −
1

2
(I − μext(Γ))

2
]
.

(9)
Combined with the definition of gradient descent evolutions
(8) and the formula for the normal velocity (7) this gives the
gradient descent procedure in the level set framework:

∂φ

∂t
=

(
ακ+ β

[1
2
(I −μint(Γ))

2−
1

2
(I −μext(Γ))

2
])

|∇φ|,

where φ(x, 0) = φ0(x) represents the initial contour Γ0, and
μint(Γ) and μext(Γ) are given by (3) and (4), respectively.

3. SEGMENTATION OF IMAGE SEQUENCES

3.1. A Variational Updating-Model

In this section we are going to present the basic principles be-
hind our variational model for updating segmentation results
from one frame to the next in an image sequence.

Let Ij : D → R, j = 1, . . . , N , be a succession of
frames from a given image sequence. Also, for some integer
k, 1 ≤ k ≤ N , suppose that all the frames I1, I2, . . . , Ik−1

have already been segmented, such that the corresponding
contours Γ1,Γ2, . . . ,Γk−1 are available. In order to take ad-
vantage of the prior knowledge obtained from earlier frames
in the segmentation of Ik , we propose the following method:
If k = 1, i.e. if no previous frames have actually been seg-
mented, then we just use the classical Chan-Vese model, as
presented in Sect. 2. If k > 1, then the segmentation of Ik

is given by the contour Γk which minimizes an augmented
Chan-Vese functional of the form,

EA
CV (Γk−1,Γ) := ER

CV (Γ) + γEI(Γk−1,Γ), (10)

where ER
CV is the reduced Chan-Vese functional defined in

(5), EI = EI(Γk−1,Γ) is an interaction term, which penal-
izes deviations of the current active contour Γ from the previ-
ous one, Γk−1, and γ > 0 is a coupling constant which deter-
mines the strength of the interaction. The precise definition
of EI is described below.

3.2. The Interaction Term

The interaction EI(Γ0,Γ) between a fixed contour Γ0 and an
active contour Γ, used in (10), may be chosen in several dif-
ferent ways. Two common choices are the so-called pseudo-
distances, cf. [5], and the area of the symmetric difference of
the sets int(Γ) and int(Γ0), cf. [3]. Here we propose a new
pose-invariant interaction term.
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To describe this interaction term, let φ0 : D → R denote
the signed distance function associated with the contour Γ0,
that is, the function:

φ0(x) =

{
dist(x,Γ0) for x ∈ ext(Γ0),

− dist(x,Γ0) for x ∈ int(Γ0).
(11)

Then the interaction EI = EI(Γ0; Γ) is defined by the for-
mula,

EI(Γ0,Γ) = min
T

∫
int(Γ)

φ0(T
−1

x) dx, (12)

where the minimum is taken over the group of Euclidean
transformations T : R

2 → R
2 which preserves the orien-

tation of the plane, that is, translations and rotations but not
reflections. Minimizing over groups of transformations is the
standard devise to obtain pose-invariant interactions, see [3]
and [5].

For any given contour Γ, let T = T (Γ) denote the trans-
formation which minimizes the expression on the right hand
side of (12). Since this is an optimization problem T (Γ) can
be found using gradient descent. For simplicity of presen-
tation, suppose we only consider the group of translations
Ta : x �→ x + a, a ∈ R

2, and want to determine the op-
timal translation vector a = a(Γ). Then we have to solve the
optimization problem

min
a

∫
int(Γ)

φ0(x − a) dx.

The optimal translation a(Γ) can then be obtained as the limit,
as time t tends to infinity, of the solution to the initial value
problem

ȧ(t) =

∫
int(Γ)

∇φ0(x − a(t)) dx , a(0) = 0. (13)

Similar gradient descent schemes can be devised for rotations
and scalings (in the case of similarity transforms), cf. [3], but
will not be written out explicitly here.

3.3. The Gradient Descent Equations

The augmented Chan-Vese functional (10) is minimized using
standard gradient descent (8) described in Sect. 2 with ∇E
equal to

∇EA
CV (Γk−1,Γ) := ∇ER

CV (Γ) + γ∇EI(Γk−1; Γ), (14)

and the initial contour Γ(0) = Γk−1. Here ∇ER
CV is the L2-

gradient (9) of the reduced Chan-Vese functional, and ∇EI

the L2-gradient of the interaction term, which is given by the
formula,

∇EI(Γk−1,Γ;x) = φk−1(T (Γ)x), (for x ∈ Γ), (15)

see [12]. Here φk−1 is the signed distance function for Γk−1.

4. EXPERIMENTS

In this section we present the results obtained from experi-
ments using two different image sequences. We use the Chan-
Vese model to segment a selected object with approximately
uniform intensity and apply the proposed method frame-by-
frame. First we compute the optimal translation vector (13)
based on the previous contour, we then use this vector to
translate the previous contour until it is aligned to the optimal
position (15). Then the minimum of the functional (10) is ob-
tained by the gradient descent procedure (14) implemented in
the level set framework outline in Sect. 2. This procedure is
iterated until it converges. See also [10].

The Chan-Vese method will have problems segmenting
an object if occlusions appear in the image which cover the
whole or parts of the selected object. In Fig 1, we show the
segmentation results for a nonrigid object in a synthetic image
sequence, where occlusions occur. The Chan-Vese method
fails to segment the selected object when it reaches the occlu-
sion (Top Row). Using the proposed method, we obtain much
better results (Bottom Row).

Another experiment is given in Fig. 2, where a walking
person is being segmented (available at http://homepages.inf.
ed.ac.uk/rbf/CAVIAR/). Here the proposed method prevents
the segmentation of the spurious objects, as is clearly shown.

In both experiments the coupling constant γ is varied to
see the influence of the interaction term on the segmentation
results. The contour is only slightly affected by the prior if γ
is small. On the other hand, if γ is too large, the contour will
be close to a similarity transformed version of the prior.

5. CONCLUSIONS

We have presented a new method for segmentation of non-
rigid objects in image sequences. The proposed method is
formulated as variational problem, with one part of the func-
tional corresponding to the Chan-Vese model and another part
corresponding to a pose-invariant interaction term as a shape
prior based on the previous contour. The optimal transfor-
mation as well as the shape deformation are determined by
minimization of an energy functional using a gradient descent
scheme. Preliminary results are shown and its performance
looks promising.
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Fig. 1. Segmentation of a nonrigid object in a synthetic image sequences with additive Gaussian noise. Without the interaction
term, noise in the occlusion is captured (Top Row). This is avoided when the interaction is included (Bottom Row).
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and Bottom Row: with interaction term

[3] T. Chan and W. Zhu, “Level set based prior segmenta-
tion,” Technical Report 03-66, Department of Mathe-
matics, UCLA, 2003.

[4] D. Cremers, N. Sochen, and C. Schnörr, “Towards
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