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ABSTRACT

Visual tasks often require a hierarchical representation of images
in scales ranging from coarse to fine. A variety of linear and nonlin-
ear smoothing techniques, such as Gaussian smoothing, anisotropic
diffusion, regularization, wavelet thresholding etc... have been pro-
posed. In this work, we propose a geometrical multiscale anisotropic
diffusion based on the geometrical flow for denoising multivalued
images. The geometrical flow is determined by the Bandelet trans-
form of the image being processed. Consequently, the image is seg-
mented into a quadtree where each square regroups pixels sharing
the same geometrical flow direction. The motivation of this work
is to introduce a new multiscale multistructure bandelet-based dif-
fusion tensor to adjust the anisotropic diffusion toward the direction
of the optimal geometrical flow. Therefore, multiple dyadic squares
in the quadtree have multiple structure tensors. Hence, a more ac-
curate geometrically driven noise suppression is obtained where the
homogeneity of different image regions is well maintained.

Index Terms— Bandelet, wavelet, anisotropic diffusion, filter-
ing, color images

1. INTRODUCTION

An observed digital image can contain random noise η superim-
posed on the pixel intensity by the following formula:

Inoisy = Itrue + η (1)

We would like to recover the true image Itrue from its noisy ob-
servation Inoisy . Noise is recognized as rapidly oscillating signals
and can, therefore, be removed by the process of low-pass filtering
at the expense of some details such as edges. Wavelet-based meth-
ods, statistical methods, and diffusion filters have successfully been
used to remove noise from digital images. In applications, a number
of authors stick to the original Perona-Malik’s anisotropic diffusion
scheme [1], but numerous derived, similar and/or improved, algo-
rithmic approaches have appeared in the meantime. Novel applica-
tion areas for anisotropic diffusion have emerged which prove the
power of these filters for both 2D and 3D data filtering. This makes
the need for amelioration of the anisotropic diffusion a challenging
task.
The Bandelet transform was firstly introduced by Le Pennec and
Mallat [2]. The first generation of Bandelet basis was not built di-
rectly in the discrete domain and therefore it does not provide a mul-
tiresolution representation of the geometry. Furthermore, the first
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generation of Bandelet showed some edge artifacts that are undesir-
able in an edge preserving diffusion scheme. On the other hand, the
second generation of Bandelet transform, introduced by Peyre and
Mallat in [3], is computed with a geometric orthogonal transform
that is applied on orthogonal wavelet coefficients. Thus, each geo-
metric direction leads to a different transform.
Taking advantage of this geometrical representation, a multispec-
tral multistructural tensor is proposed to adjust the image gradient in
the denoising process toward the geometry direction. Given that the
singularity of edges is well presented in the Bandelet basis by elon-
gated functions that are nearly parallel to these edges and that the
image pixels sharing the same geometrical properties are distributed
on different dyadic squares defined by the direction of the geometri-
cal flow, an accurate edge-preserving, less blurring and homogeneity
maintaining anisotropic diffusion is obtained.
The rest of the paper is organized as follows. In section 2, a review of
the Bandelet transform is presented. In section 3, a description of the
Perona-Malik diffusion scheme is given. In section 4, the bandelet-
based anisotropic diffusion is described. Experimental results are
shown in section 5 and section 6 presents some concluding remarks.

2. BANDELET TRANSFORM

We only present here a brief review of the Bandelet transform.
The reader can refer to [4] for a full detailed description of the Ban-
delet transform.
The bandelets are defined as anisotropic wavelets that are warped
along the geometric flow, which is a vector field indicating the lo-
cal direction of the regularity along edges. The dictionary of ban-
delet frames is constructed using a dyadic square segmentation and
parametrized geometric flows. The ability to exploit image geome-
try, makes its approximation error decay optimal asymptotically for
piece-wise regular images.
For image surfaces, the geometry is not a collection of discontinu-
ities, but rather areas of high curvature. The Bandelet transform
recasts these areas of high curvature into an optimal estimation of
regularity direction. Figure 1 shows an example of bandelets along
the geometric flow in the direction of edges. In real applications, the
geometry is estimated by searching for the regularity flow and then
for a polynomial to describe that flow.

2.1. Implementation of the Bandelet Transform

The Bandelet transform is first implemented by reordering the
2D Wavelet coefficients and then performing a 1D wavelet trans-
form. The classical tensor wavelet transform of an image I is the
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Fig. 1. An illustration of bandelets with geometric flows in the di-
rection of the edge. The support of the wavelets is deformed along
the geometric flows in order to exploit the edge regularity.

decomposition of the latter on an orthogonal basis formed by the
translation and dilation of three mother wavelets {ψH , ψV , ψD} for
the horizontal, vertical and diagonal directions. Once the wavelet
transform is found, the quadtree is computed by dividing the image
into dyadic squares with variable sizes (refer to [3] for more informa-
tion on computing the quadtree). For each square in the quadtree the
optimal geometrical direction is computed by the minimization of a
lagrangian (refer also to [3]). Then a projection of the wavelet co-
efficients along the optimal direction is performed [3]. Finally a 1D
discrete wavelet transform is carried on the projected coefficients.
On figure 2 one can see, for the finest scale of the wavelet transform,
the quadtree, and a zoom on the orientation of the linear flow on each
dyadic square. Notice that the quadtree segmentation performs very

Fig. 2. Lenna image quadtree segmented

well in the area corresponding to edges.

3. ANISOTROPIC DIFFUSION: PERONA-MALIK
FORMULATION

The aim of the diffusion algorithms is to filter the noise from
an image by modifying the image via a PDE. Perona and Malik [1]
replaced the classical isotropic diffusion equation with

∂I (x, y, t)

∂t
= div [g (‖∇I‖)∇I] (2)

Where ‖∇I‖ is the gradient magnitude, and g (‖∇I‖) is an edge
stopping function satisfying g (x) → 0 when x → ∞ so that the
diffusion is ”stopped” across edges.
However, the Perona-Malik model meets several serious practical
and theoretical difficulties. The first inconvenience is related to its
sensitivity to noise. Assume an image carries strong noise. The
Perona-Malik model will conserve the noise in the processing. An-
other difficulty arises from the existence of the local backward dif-
fusion in the area where (g (‖∇I‖)∇I) < 0. There is no existent
theory to support the uniqueness of the solutions of equation (2). Ex-
amples show that (2) is unstable in the sense that very close images
could produce divergent solutions [5].
The multistructural tensor of Di Zenzo [6] allowed the extension

of the Perona-Malik approach toward color or multispectral images.
For a multichannel image I =

(
I1, I2, ....., In

)T
the structure ten-

sor is given by

Q =

(
IT

x Ix IT
x Iy

IT
y Ix IT

y Iy

)
(3)

where superscript T indicates the transpose operation.
The extended Perona-Malik model for an m-valued image can be
written as:

⎧
⎪⎨
⎪⎩

∂Ii
∂t

= div (g (‖Q‖)∇Ii)
Ii (x, y, 0) = Ii0 (x, y) for i = 1, 2....., m
∂Ii
∂n

∣∣∣
∂Ω

= 0
(4)

Where Ω is the image domain.

4. BANDELET-BASED ANISOTROPIC DIFFUSION

The Perona-Malik model regularizes the image gradient ∇I to
reduce the influence of noise. The effectiveness of the regularization
is therefore dependent on the type of noise. The motivation of this
work is to make the anisotropic diffusion adjusted by the optimal ge-
ometrical direction in each square of the quadtree. For that purpose,
a multiscale multistructural bandelet-based diffusion tensor for an
m-valued image is defined by:
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for i = 1, 2, .....m
(5)

The norm of Gj
B is defined in terms of its eigenvalues λ+ and λ−,

||GB || =
√

λ+ + λ−. The angle θi represents the angle of the
optimal direction of the geometrical flow. j is the scale of the 2D
wavelet transform. Bj

i,q is the corresponding bandelet coefficient
at the square number q. The squares in the quadtree are numbered
from top to bottom and from left to right. Figure 3 shows the norms
of the multiresolution tensor of Di Zenzo (Fig. 3(b)) and the norm of
the multiscale multistructure tensor defined in (5) (Fig. 3(c)) of the
noisy ’Lenna’ image.
It is clear that the norm of the structure tensor defined in (5) provided
a better edge characterization. We should notice here that the singu-
larities of the image edges are well characterized with small fitted
squares (Fig. 2). Furthermore, noise pixels will be represented by
the maximal geometrical flow driven by the non-noisy pixels in the
corresponding dyadic square. Thus, the noisy pixels have no influ-
ence on the geometrical flow representation. As a result, the norm of
the structural tensor proposed in (5) represents only the pixels with
a maximal intensity change, i.e., the edges. Another interesting ad-
vantage is that the geometry of the image is summarized with local
clustering of similar geometric vectors. Therefore, the homogeneous
areas are taken from a quadtree structure. As a result, the blurring
is reduced since the boundaries between the different homogeneous
image areas are conserved.
It is to be noted that for a each dyadic square in the quadtree we have
a different structure tensor according to the direction of the geomet-
rical flow.
The bandelet-based anisotropic diffusion is therefore defined by:

⎧
⎪⎨
⎪⎩

∂Ii
∂t

= div
(
g

∥∥Gj
B

∥∥) ∇̃Ii

Ii (x, y, 0) = Ii0 (x, y)
∂Ii
∂n

∣∣∣
∂Ω

= 0
(6)

Where g is the edge stopping function and ∇̃Ii is the directional
gradient with respect to the direction of the flow. Common diffusiv-
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(a) Noisy Lenna Image (b) Norm of the Di Zenzo tensor

(c) Norm of the structure tensor defined in (5)

Fig. 3. Norm of different multistructural tensor

ity functions or edge stopping functions are proposed by Perona [1],
German and Reynolds [7], Aubert et al. [8] and Saint-Marc et al [9].
For example, the one proposed by Perona et Malik is defined by:

exp
(
− (∇I

k

)2
)

The k parameters in these functions, also called edge threshold
parameter, controls the shape of the diffusivity function, balancing
the degrees of inter-region smoothing and edge enhancement in the
diffusion process. Perona and Malik proposed to compute the his-
togram and then let k equals to 90% of the integral of the histogram.
Since the obtained representation by using (5) is an accumulation
of gradients, this results in an enlarged edge stopping value that im-
proves noise reduction while preserving edge structures. Actually,
the k parameter is computed as follows.
It can be shown that:

σ2√
λ+

v +λ−
v
≈ Nσ2

v (7)

with N the number of pixels in the image and σ2
v the noise variance

at scale v of the 1D wavelet transform used in the computation of the
bandelet coefficients. σ2

v is given by:

σ2
v = ‖ψv‖2 σ2 (8)

where σ2 is the noise variance of the image, ψ is the mother wavelet
used to compute the wavelet transform of the image, and ‖ψv‖2 des-
ignates its norm . The k parameter is made proportional to σv:

k = c
√

Nσv (9)

Where c is a constant.

5. EXPERIMENTAL RESULTS

This section is devoted to comparing the Bandelet-based anisotropic
diffusion scheme that is presented in this paper with previous work
on image restoration.
For that purpose, the noisy image shown in figure 4(b) is processed
by equation (6) as well as by the Perona-Malik scheme. The noisy
image is obtained by adding a white gaussian noise to the image of

(a) (b)

Fig. 4. Original image and the noisy image (SNR=27.21dB) ob-
tained by adding a white gaussian noise

figure 4(a).
In figures 5(a) and 5(b), the results obtained by filtering the noisy

images (fig. 4(b)) by the Perona-Malik approach (equation 4) and the
Bandelet-based regularization (equation 6) are shown respectively.

The noisy image of figure 4(b) is also processed with the edge

(a) (b)

Fig. 5. Filtered image obtained by: (a) The Perona-Malik approach
(SNR=31.59dB), (b) the Bandelet-based approach (SNR=32.9dB)

enhancement diffusion (EED) [10], the coherence enhancement dif-
fusion (CED) [11], the Tikhonov diffusion (TD), the color total vari-
ation schemes (CTV) and the undecimated wavelet coefficients hard
thresholding and soft thresholding. The results are shown in figures
6. The problem with wavelet coefficient thresholding is that setting
coefficients to zero leads to smooth image (Fig. 6(f)) and destroy
details which cause blur and artifacts (Fig. 6(e)).

Compared to the other schemes, the Bandelet-based anisotropic
diffusion showed better details preserving, less blurring and better
image restoration.
The quality of the filtered images is also evaluated using CIEDE2000
color difference equations [12]. The CIEDE2000 evolved from
traditional colorimetry and color difference calculations is tested us-
ing several psychophysical datasets. The color differences between
the original image (Fig. 4(a)) and each of the filtered images ob-
tained using different denoising schemes are shown in figure 7. The
PDE bandelet-based approach showed the lowest color difference
and therefore it approaches the original image more than the other
denoising techniques. Therefore, it respects the colorimetric char-
acteristics of the original image. We have also processed the noisy
image (Fig. 4(b)) with the wavelet-based methods proposed by Sche-
unders in [13] and Piz̃urica et al. in [14]. However, the proposed
Bandelet-based diffusion achieved better SNR (the SNR of the for-
mer is 31.97 dB while that of the latter is 32.04 dB) as well as lowest
CIEDE2000 color differences.
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(a) (b) (c) (d) (e)

Fig. 7. CIEDE2000 color difference between the original image and the filtered image obtained by: (a) bandelet based approach, (b)
Wavelet hard thresholding, (c) Perona and Malik approach (d)Color Total Variation

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Filtered image obtained by: (a) EED (SNR=29.058dB),
(b) CED (SNR=29.11dB), (c) (TD) (SNR=32.11dB), (d) (CTV)
(SNR=28.76dB), (e) Wavelet hard thresholding(SNR=38.95dB) and
(f) wavelet soft thresholding(SNR=31.28dB)

6. CONCLUSION

In this paper, a bandelet-based anisotropic diffusion is described.
It uses a multiscale structure tensor that is computed from the ban-
delet coefficients and the direction of the geometrical flow of the
image being processed. The introduced structure tensor provides a
better edge characterization than the structure tensor of Di Zenzo.
The bandelet-based diffusion provides a better edge preserving and
less blurring in the processed image. The proposed scheme is com-
pared with earlier anisotropic diffusion schemes and with wavelet
thresholding techniques. A future perspective could be to extend the
proposed scheme to the regularization of surfaces of higher dimen-
sional images.
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