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ABSTRACT

Directional information is an important component of both

natural and synthetic images, and it is exploited in many im-

age processing applications. Directional basis analysis is used

to capture significant structural information. This paper pres-

ents an empirical study of image denoising with directional

bases. We consider two distinct approaches. One involves the

Multi-resolution Fourier Transform (MFT) facilitated with a

multi-directional selective filter. The other is based on statis-

tics, Independent Component Analysis (ICA) that adaptively

decomposes an image into a set of directional bases. We then

present a combined approach that benefits from the computa-

tional efficiency of the MFT and the data adaptiveness of ICA.

Experimental results are compared with those from other re-

cent directional transforms such as the Curvelet and Direc-

tional cosine transform.

1. INTRODUCTION

Removal of noise from noisy images to obtain the unknown

original image is often referred to as denoising. Gaussian ad-

ditive white noise has a frequency spectrum that is continuous

and uniform over a specified frequency band. It is spatially

uncorrelated, and the noise for each pixel is independent and

identically distributed (iid).

f̄ = f + ξ (1)

where f̄ is the noisy image, f is the original image and ξ is

i.i.d. noise. Images are assumed to be linear-shift invariant,

and linear methods such as the Wiener filter and the Kalman

filter are often employed for denoising. Linear denoising meth-

ods are simple and inexpensive to implement, however they

tend to blur the edge structure of the image, structure that

is very important to the human visual system. The Markov

random field, as well as various extensions, has been utilised

to model the contextual information embedded in image for-

mation. Partial differential equation (PDE)-based techniques

have also attracted much attention recently, in which image

details are preserved by adding an edge detection term. The

single value decomposition method decomposes the column

space of the observation matrix into a dominant and a subordi-

nate part, revealing which of its subspaces can be attributed to

the noise-free signal and which can be attributed to the noise.

It is often assumed that these two subspaces are orthogonal

to each other, which implies that signal and noise are inde-

pendent. In a similar manner, a blind source separation or the

Independent Component Analysis (ICA) decomposes signals

assuming the following relation between components [1].

P (A ∧ B) = P (A) · P (B) (2)

where A and B are the independent components of signal.

Given sufficiently large number of components, a few of the

components can be pure noise components.

The wavelet transform can decompose the original signal into

a smooth part (lowpass) and a detailed part (highpass). For

most signals, energy is mainly distributed in the smooth sub-

band, and energy in the detail subband is clustered to a few

large wavelet coefficients, corresponding to the edge struc-

ture of the original signal. Donoho and his colleagues [2] pio-

neered a wavelet denoising scheme by using soft thresholding

and hard thresholding. This approach, with the orthonormal

wavelet, thresholds the wavelet transform coefficients within

the detail subband. It is well known that Donoho’s method of-

fers the advantages of smoothness and adaptation. However,

as Coifman and Donoho pointed out, this algorithm exhibits

visual artefacts: Gibbs phenomena in the neighbourhood of

discontinuities. However, the fundamental limitation of the

orthonormal wavelet transform is the limited directional sub-

band regardless of scale. In response, Starck and colleagues

[3] proposed the Curvelet transform that extracts directional

features in multi-scale using the Ridgelet. Later, other sim-

ilar transforms followed such as the Contourlet which also

consists of directional filter banks [4]. These transforms have

proven effective in denoising. Compared with these new tech-

niques, a much older technique with inherent directional fea-

ture recognition can achieve similar performance with a di-

rectional filter, that is the Multiresolution Fourier Transform

(MFT). We present the ICA-MFT combined algorithm as well

as the MFT with a multi-directional filter.

The paper is organised as follows. The next section starts

with an introduction to ICA in the context of the denoising

task. In section 3, denoising using the MFT with a Gaussian

mask is explored and a combined approach is described in

section 4. Section 5 introduces the MFT facilitated with a
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multi-directional filter based on Radon analysis. Section 6

reports an experimental comparison with other state-of-the-

art techniques [3].

2. ICA BASED APPROACH

Independent Component Analysis (ICA) has been frequently

applied to computational neuroscience and the modelling of

simple and complex cells in the human primary visual cortex

(V1) [1, 5] which is responsible for directional feature identi-

fication. Recently, an ICA based denoising method has been

developed by Hyvarinen and his colleagues [6]. The basic

motivation behind this method is that the ICA components of

many signals are often very sparse so one can remove noise

in the ICA domain.

x = As (3)

where x, A and s are the observed data, a linear mixing ma-

trix and the source (latent) data respectively, which are inde-

pendent and nongaussian. Unlike the wavelet-based denois-

ing methods, an ICA based method uses a representation that

is estimated solely by the statistical properties of the avail-

able data. The estimation of the ICA data model can be re-

duced to the search for uncorrelated directions in which the

components are as nongaussian as possible and as a result

the independent components have a sparse (supergaussian)

distribution as possible. Hyvarinen developed a sparse code

based noise shrinkage method similar to the wavelet shrink-

age method [6].

x = As + v (4)

where v is a Gaussian noise vector and x the noisy signal.

An approximate version of s, ŝ can be obtained, applying

shrinkage on Â−1x. The components, Â−1x (neuron from

a physiological viewpoint) with small activities are assumed

as noise and shrunken, retaining only a few components with

large activities [6]. This, however differs in the following as-

pects. The shrinkage nonlinearities are estimated separately

for each component, as opposed to a single fixed model in

wavelet shrinkage. Also maximum-likelihood estimation is

used in the nonlinearity estimation instead of minimax es-

timation. This method assumes training to estimate the or-

thogonal basis with noise-free data that has similar statistical

properties. However, we attempted denoising without prior-

training with empirically optimized settings.

3. MFT BASED APPROACH

The ability to capture the directional patterns which exist at

various locations, scale and orientation is a recent research

trend in the image processing community. For example, the

curvelet [3] represents a curve as a superposition of functions

of various lengths and width controlling orientation across

various scales. Various implementations have been proposed

such as the curvelet, contourlet, brushlet, etc. The same abil-

ity can be found in the Multi-resolution Fourier Transform

(MFT) [7]. The MFT has been proposed as a combination of

STFT and the wavelet. With the windowing function g(t), the

transform of a function f ∈ L2(R) at position u, frequency ξ

and scale s is defined as below.

Mf(u, ξ, s) =
1√
s

∫ +∞

−∞

f(t)g(s(t − u))e−iξtdt (5)

The Laplacian pyramid is used to decompose the image ac-

cording to frequency which shows isotropic behavior. At each

scale, the windowed Fourier transform is applied with the

same window. The high frequency directional patterns can

be observed in the Fourier local spectrum. This is where an

elliptical shape of Gaussian filtering is suggested in [8] as fol-

lows.

G(x) =
1

2π
(
−xT C−1x

2
) (6)

where C is a covariance matrix, which can be obtained from

the inertia tensor of the spectrum. The frequency window is

effectively concentrated on a narrow oriented band. Experi-

mental denoising results are presented in section 6.

4. ICA-MFT COMBINED APPROACH

The methods in the previous two sections approach the de-

noising problem in a different way. The ICA-based method

uses purely statistical properties of the available data, adapt-

ing to the data. As a result, it requires larger computation even

without a training process as the specified number of bases in-

creases. The second approach takes advantage of the Fourier

spectrum that exhibits a directional energy pattern. The non-

linearity of the Gaussian function formed by the inertia tensor

from the spectrum is used for soft-thesholding. It, however,

is not sufficient to represent a multi-directional pattern with a

single Gaussian model. A Gaussian mixture model could be

employed [9], but estimation of the mixture model increases

the computational burden and nonlinear estimation can suffer

from the local minima problem. We combine the two meth-

ods, effectively achieving a semi-adaptive wave packet basis,

in a way that an algorithm can be computationally efficient

and also adaptive to data, in two steps.

1. Perform ICA on each subband of the MFT with a lim-

ited number of components specified, for instance a

third as many as the sufficient number of bases. This

ratio needs to be determined adaptively and accurately

so that no component with a meaningful pattern is dis-

carded, where the discarded components are assumed

to represent pure noise. This reduces the computation

significantly.

2. Apply a 2D Gaussian filter obtained from the Fourier

spectrum of the bases found in step.1. As most of the

components are localised in orientation as well as fre-

quency, a much narrower and oriented Gaussian model

that fits the data can be obtained from the spectrum.
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Fig. 1. MFT-Slice Denoising (noisy image, a multi-

directional filter on spectrum and denoised image

5. MFT-SLICE APPROACH

The last approach benefits most from the fact that the ICA

decomposes a block of a specific frequency band comprising

multi-directional features into a set of bases localized in ori-

entation (similar to ridgelet basis), so that the elliptical shape

of the Gaussian filter obtained from the local spectrum fits the

Fourier spectrum of the basis well. In this way, the inherent

denoising capability of ICA discussed earlier combines with

that of the MFT. Alternatively, however, we can replace ICA

by providing a multi-directional filter using Fourier slice anal-

ysis. The Fourier slice analysis involves the computation of

projection r(θ) for 0 ≤ θ < π.

r(θ) = ci · ΣΣ|F (x, y)|δ(xcosθ + ysinθ) (7)

where ci indicates a normalization constant at MFT scale i,

and F is the Fourier spectrum. The shape S of the multi-

directional filter consists of a set of points as below.

S = {[r(θ)cosθ, r(θ)sinθ]T} (8)

The resulting contour represents the energy distribution of the

significant directional pattern and is illustrated in Fig.1.The

shape is used instead of the elliptical shape for the Gaussian

filter for hard-thresholding, i.e. coefficients outside the shape

are zeroed. The novelty of the approach is that instead of per-

forming shrinkage on the transformed coefficients, we clean

up the basis functions to allow a better reconstruction.

6. EXPERIMENTAL RESULTS

To illustrate the effectiveness of the proposed algorithms, com-

parative results with recent directional wavelet transforms are

presented at various noise levels. The MFT was implemented

on the Laplacian pyramid with 3 scale levels and a 50% over-

lapping cos2 window of size 16 × 16. The MFT-Slice ap-

proach is facilitated with a window of size 32 × 32 for bet-

ter directional analysis. We evaluated ICA, ICA-MFT and

MFT-Slice against other directional basis transforms: Curve-

let [3], Directional Cosine Transform (DDCT) [8], MFT--

Gaussian Filtering (MFT) [8] and the Translation Invariant

Wavelet Packet (TIWP). The test images Lena and Jaguar

are shown in Fig.2 and Fig.3 with comparative results on a

noisy image of SNR 15dB. Lena has a region of fur/feathers

on her hat that creates multi-directional patterns, while the

rest of the image is either homogeneous or directional. Clearly

most of the methods with directional bases preserve the tex-

ture while TIWP produces quite a blurred image. The MFT,

Source Noisy Curvelet

DDCT TIWP MFT

ICA ICA-MFT MFT-Slice

Fig. 2. Comparative evaluation : Lena

Source Noisy Curvelet

DDCT TIWP MFT

ICA ICA-MFT MFT-Slice

Fig. 3. Comparative evaluation : Jaguar
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Table 1. SNR Results for different noise levels

Noise(dB) Curvelet DDCT TIWP MFT ICA ICA-MFT MFT-Slice

lena 5 17.55 17.44 18.91 18.97 18.74 19.50 19.43

10 18.67 18.56 21.05 21.61 19.51 21.32 21.82

15 19.40 19.37 23.49 24.42 21.48 22.65 24.55

20 19.83 19.80 26.21 26.80 22.98 23.01 27.67

jaguar 5 12.19 12.18 15.41 15.45 12.24 12.66 13.36

10 12.88 12.84 18.11 17.90 12.66 13.71 17.72

15 13.24 13.26 20.94 19.89 13.28 15.23 21.04

20 13.43 13.42 23.85 21.07 14.38 14.59 23.54

ICA-MFT and MFT-Slice show better results. Jaguar fea-

tures a blob pattern on the Jaguar skin. The Curvelet and

DDCT suffer from Gibb’s phenomenon while both ICA-based

approaches show rather blurred images. As the blob texture

of the Jaguar requires various directional bases for reconstruc-

tion, most of the allocated bases of ICA are exhausted for ori-

entation, and this leaves no basis to hold noise. The MFT

and MFT-Slice generally show better results with much lower

computational cost than the other methods. The MFT-Slice

preserves the multi-directional pattern and removes noise bet-

ter than the MFT as shown in both figures. The results of

experiments at various noise levels are presented numerically

in Table.1 (whole image). In Lena, MFT-Slice shows good

SNR results and preserves edge structures as shown in Fig.2

and Fig.3. In Jaguar, despite TIWP providing good SNR

results , the edge structures are quite blurred.

7. CONCLUSION

In this paper, we have briefly introduced two combined ap-

proaches to image denoising involving directional informa-

tion. The results compare well with other proposed direc-

tional wavelet bases. It should be noted that the approach of

combining different analysis methods is applicable not only

to the problem of noise removal, but also it provides a new

avenue to directional image analysis and numerical harmonic

analysis as a whole. The MFT, originally proposed as a gen-

eral image analysis tool has been around for more than a

decade, with successful applications in feature extraction, mo-

tion estimation and texture analysis. By employing the idea

of directional frequency filtering, the MFT finds a connection

with the recent curvelet transform but with much lower com-

plexity. The previously proposed MFT based anisotropic im-

age denoising is limited fundamentally by its single-direction

feature hypothesis, which assumes there is only one feature

present in a local window. We tackled this limitation by two

possible solutions. One is to use a source separation method,

ICA, to decompose the signal into adaptive bases, in which

the basis functions are expected to be a single directional

component which can be dealt with effectively by the original

MFT directional filter. The second is to introduce a multi-

directional filter in the local Fourier spectrum by performing

a Fourier slice integration of the magnitudes. This results in

an adaptively shaped frequency mask which allows multiple

components without prior knowledge of the number of com-

ponents. The denoising experiments presented are intended

as an example to show the power of the combined analysis al-

though further improvement is possible by a frequency mask

consisting on 1D Gaussian on every fourier slice instead of the

hard-thresholding mask. On-going research is focused on em-

ploying the combined approach in other vision-related tasks

such as segmentation and coding.
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