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ABSTRACT 

This paper describes salienShrink, a method to denoise 
images based on computing a map of salient coefficients in 
the wavelet domain and use it to improve common 
denoising algorithms. By salient, we refer to those 
coefficients that correspond mostly to pure signal and 
should therefore be preserved throughout the denoising 
procedure. We use a computationally efficient model to 
detect salient regions in the bands of the multiresolution 
wavelet transform. These regions are used to obtain a more 
accurate estimate of the noise level, improving the 
performance of existing well known shrinkage methods. 
Extensive experimental results on the BiShrink method 
show that the proposed method effectively enhances PSNR 
and improves the visual quality of the denoised images. 
 
Index Terms— saliency detection, wavelet shrinkage, 
image denoising 

1. INTRODUCTION 
Image denoising remains one of the fundamental problems 
in the field of image processing and still poses challenges to 
the researchers. Noise in images is usually present due to 
capturing instruments, transmission, quantization etc. and 
despite the huge number of published techniques each 
approach has its own assumptions, advantages and 
limitations. Hence, usually successful denoising depends on 
the task at hand.  

Discrete Wavelet Transform (DWT) has been widely 
used to suppress noise in images, since properties like 
sparsity and multiresolution structure fit well with the 
denoising procedure. Sparsity refers to the property of the 
wavelet transform to concentrate signal energy into a small 
number of large coefficients enabling therefore the 
reduction of noise with appropriate thresholding reduction 
of the absolute coefficient values [1]. Wavelet shrinkage, a 
well known non-linear coefficient thresholding method, is 
based on this fact. Preliminary shrinkage methods used 
either a universal threshold, like VisuShrink [1], or a 
subband adaptive one like the SureShrink [9] and 
BayesShrink [10]. Extensions of these methods have been 
appeared and prove to be more successful since they exploit 
dependency between coefficients either at the same or at 
different scales. Literature is rich in methods predicting the 
contribution of wavelet coefficients based only on intra-

scale or both on intra- and inter- scale dependencies [2][4] 
[3][5][6][7][8]. 

Such approaches are either based on a local 
neighborhood or assume a specific coefficient model 
extracted through statistical analysis. Usually they exploit 
the multiresolution properties of the wavelet transform by 
identifying across scale correlations between wavelet 
coefficients and local correlation between neighborhood 
coefficients. These approaches, no matter if they employ a 
model or not, require the computation of appropriate 
statistical properties at the coefficient or subband level. 
Chen et al. proposed NeighShrink, a wavelet thresholding 
scheme, by incorporating neighboring coefficients [4]. 
Sendur & Selesnick assumed non-Gaussian bivariate 
distributions and proposed non-linear threshold functions 
(shrinkage functions) derived from this model using 
Bayesian estimation theory [6][7]. 

In the proposed work, we use the notion of saliency in 
the wavelet domain and propose a simple way to produce 
denoised images both of high PSNR and high visual quality. 
We assume that the high salient regions detected by our 
method correspond to regions of high signal structure and 
low noise (e.g. areas with many edges). The adopted 
method for saliency detection is based on a simplified 
version of the selective tuning (ST) model proposed by 
Tsotsos et al. [11]. According to the proposed model, the 
visual input is decomposed into several bands using the 
DWT or the Dual-Tree Complex Wavelet Transform 
(DTCWT) and each subband is searched for salient 
coefficients. This search is accomplished using an across-
scale Winner-Take-All (WTA) network that detects the 
most salient coefficients in terms of magnitude and is 
inspired by the ST model. The methods results in a final 
saliency map (S) for each of the subbands that represents the 
high and low saliency regions in terms of gray values.  

For comparison purposes, we use publicly available 
implementations of well established algorithms and provide 
results on a variety of images both in terms of PSNR and 
visual quality at different levels of noise. The computed 
saliency map is used to enhance BiShrink, the denoising 
method proposed by Sendur & Selesnick [6], both for the 
real DWT and the DTCWT. 
 

2. SALIENCY-BASED DENOISING 
2.1. Computing saliency in the wavelet domain 
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In order for DWT to be performed, a pair of low-pass 
and high-pass filters is applied to the image in 

both the horizontal and vertical directions. The filter outputs 
are then subsampled by a factor of two, generating a set 

, with  of three high pass bands that 
correspond to horizontal, vertical and diagonal details and a 
low-pass subband A that corresponds to the approximation 
coefficients. Although DWT has been quite successfully 
applied to many applications it suffers from orientation 
selectivity and shift variance. Recently, the DTCWT was 
proposed by Kingsbury, which has good directional 
selectivity and its subband responses are approximately 
shift-invariant 
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[13]. DTCWT gives rise to wavelets in six 
distinct directions and therefore produces a set of six detail 
subbands , with . There are two 
wavelets in each direction, one for the real and one for the 
complex part. Sendur & Selesnick have used DTCWT 
successfully in image denoising 
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[6][7]. More details on their 
technique will be given in section 2.2. 

We approach the task of selecting salient wavelet 
coefficients by using a saliency detection method inspired 
by existing models of visual attention mechanisms.  Most of 
these computational models decompose the visual input into 
a multiresolution structure, where each level is a simplified 
version of the previous one (usually Gaussian filtered) and 
apply simple operations across scales to detect the most 
prominent pixel neighborhoods [12]. In the proposed 
method, we exploit the multiresolution property of the DWT 
and apply a simplified version of the selective tuning model 
to the detail subbands. We first select the strongest item at 
the top level of the processing hierarchy (coarser level of 
the WT) using a WTA process and then propagate the 
winning location to each of the higher scales of 
representation. We use this scheme, because important (high 
valued) wavelet coefficients remain intact through scales. 
This process includes an Inhibition-Of-Return (IOR) 
mechanism, which ensures that the saliency map is scanned 
in order of decreasing saliency by the focus of attention, and 

generates the model's output in the form of spatio-temporal 
attentional scanpaths. The stopping criterion of the WTA 
approach or in other words the number of regions to be 
attended will be discussed in the next subsection. The final 
saliency map is produced at the desired level for each of the 
subbands. We compute one such map for each subband i, 
at each level l of the decomposition. 

l
iS

 
2.2. Denoising 
The extended BiShrink method that we use for our 
experiments is proposed by Sendur et al. [7] and is based on 
non-Gaussian distributions to model intra- and inter-scale 
dependencies. A short description of their method and the 
proposed framework are given in this section.  
If coefficient is at the same position as the kth 
coefficient , but at a coarser scale then the noisy 
observations of and its parent are  
and  respectively. A non-linear bivariate 
shrinkage function using the Maximum-A-Posteriori (MAP) 
estimator is then derived and the MAP estimator of 

becomes 
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 The estimator requires the knowledge of the noise variance 
 and the marginal variance  for each wavelet 

coefficient. Noise variance is usually estimated using a 
robust median estimator from the finest scale wavelet 
coefficient of the  subband (diagonal) 

2
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3D [7][4].  
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Marginal variance is calculated by 
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 where M is the number of coefficients in a neighborhood 
 around . Finally, )(kN iy  is estimated as 
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We exploit Eq. 4 for determining the stopping criterion  
of the WTA process (section 2.1) by allowing the system to 
further attend regions while the ratio between the  of the 
currently and the previously attended region remains in a 
pre-defined range . By rephrasing the main 
assumption of the proposed work (regions of high saliency 
correspond to regions of high signal presence), we may say  

ˆ

],[ 21

  
(a) 
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Fig. 1 original images and 5 attended regions of a random wavelet 
band (better viewed in color); (a) “cameraman”; (b) “boat” 
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that salient regions contain more signal structure than noise. 
Keeping this in mind, we could lower the global estimate of 
noise variance for these regions in order to avoid removing 
coefficients related to pure signal. The , as computed by 
the IOR mechanism, have low values inside the inhibited 
regions (pure signal) and high values outside them (noise). 
Hence, we multiply each saliency map   with the 
estimated noise variance after Gaussian smoothing and 
normalizing it in the range [0, 1] as 

l
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Most common shrinkage algorithms are based on predicting 
the signal’s standard deviation and use it to obtain a 

threshold [1][9][10]. As a consequence, the proposed way 
of obtaining more accurate standard deviation estimates may 
be similarly used for these techniques. In section 3, we 
present results only on the BiShrink method due to space 
limits. 

 

 
3. EXPERIMENTAL RESULTS 

Images found often in the literature are used for gauging the 
proposed denoising method. All images are of 256x256 
grayscale and corrupted by additive white Gaussian noise. 
For comparison purposes, we show results for the Sendur et 
al.’s methods with and without saliency bias, for the 
BayeShrink and for the denoising method based on Donoho 
et al.’s work included in the Matlab image processing 
toolbox 5.1. We use the public available implementation of 
BiShrink [7] for implementing the proposed method and our 
own implementation of BayesShrink. For the presented 
experiments, we set the range  and the size 
of IOR to be a ratio of the min input image dimension 

(

]2.1,8.0[],[ 21

},min{
6
1 colsrows ). The performance of the denoising 

algorithms is measured in terms of peak signal-to-noise-
ratio (PSNR), which can be defined as follows 

k
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where v is the original and d the denoised image 
respectively. In tables 1, 2 we present PSNR results for 
three images. Each number is the average of 5 runs of the 
corresponding algorithm. All implementations along with 
the PSNR results and the full resolution original/denoised 
images can be found in  
www.image.ntua.gr/~rap/icip07/salienShrink/

 
Table 2  “boat” - PSNR(dB) 

 15 20 25 30 35 
DWT-salienShrink 27.49 25.95 24.79 23.99 23.30 
DWT-BiShrink 26.27 24.73 23.65 22.97 22.42 
BayeShrink 24.54 23.08 22.46 21.97 21.50 
Donoho 25.65 25.16 24.17 22.93 21.61 
DTCWT -
salienShrink 28.62 27.23 26.33 25.44 24.76 

DTCWT -BiShrink 27.81 26.37 25.40 24.51 23.82 
 Overall, DWT-salienShrink results in an average gain 

of 1.2dB over DWT-BiShrink and 0.58dB over DTCWT-
BiShrink. In most cases, this improvement is more evident 

(a) 
 

(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 2 (a)-(b) original and noisy image with =35; (c) DWT-
salienShrink; (d) DWT-BiShrink; (e) BayeShrink; (f) Donoho; (g) 
DTCWT -salienShrink; (h) DTCWT -BiShrink 

Table 1  “house” - PSNR(dB) 
 15 20 25 30 35 

DWT-salienShrink 31.29 29.75 28.45 27.38 26.48 
DWT-BiShrink 30.43 28.58 27.15 26.13 25.31 
BayeShrink 29.2 26.58 26.04 25.59 24.80 
Donoho 28.40 25.32 22.93 20.98 19.42 
DTCWT -
salienShrink 32.71 31.32 30.21 29.32 28.61 

DTCWT -BiShrink 32.74 31.27 30.12 29.14 28.32 
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at higher level of noises as can be seen by the tables. The 
improvement in visual quality is obvious for most cases. 
Figs. 2, 3 show the results for two images and Fig. 4 shows 
2 selected parts of the denoised version of image “boat” to 
illustrate further the gain in visual quality obtained by 
proposed method. Even when the PSNR difference between 
the two methods is relative low (e.g. “house”, Table 1), 
salienShrink results in more crispy edges and less bluring 
(Fig. 2).  

4. CONCLUSIONS 
 In this paper, we presented a computationally simple 
approach to improve common image denoising algorithms 
based on the wavelet transform. A saliency map is 
computed for each of the wavelet subbands and a WTA 
network selects the most salient regions, which are then 
used to bias the estimate of noise and therefore preserve as 
much as possible the important coefficients corresponding 
to pure signal. Detailed experiments are presented that 

prove the improvements both in PSNR and visual quality of 
the denoised images. Future work will be mainly focused on 
evaluating the effect of the size of the inhibition area and an 
automatic way to determine the stopping criterion both 
involved in the WTA process. 
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Fig. 3 (a)-(b) original and noisy image with =35; (c) DTCWT-
salienShrink; (d) DTCWT–BiShrink 

 
(a) 

 
(b) 
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(d) 

Fig. 4 Details of the denoised “boat” image; (a),(c) 
DTCWT–BiShrink; (b),(d)  DTCWT-salienShrink 
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