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ABSTRACT 

 
To remove signal-dependent noise of a digital camera, we present 
a denoising approach via nonlinear image-decomposition. In the 
approach, at the first decomposition stage, multiplicative image-
decomposition is performed, and a noisy image is represented as a 
product of its two components so that its structural component 
corresponding to a cartoon image approximation may not be 
corrupted by the noise and its texture component may collect 
almost all the noise. At the successive denoising stage, the 
structural component is used instead of the unknown true signal 
value, to adapt the soft-thresholding-type denoising manipulation 
of the texture component to the signal dependency of the noise. At 
the final image-synthesis stage, one combines the separated 
structure component with the denoised texture component to 
reproduce a denoised image. The approach selectively removes the 
signal-dependent noise without not only blurring sharp edges but 
also destroying visually important textures. 
 

Index Terms— Image decomposition, variational problem, 
signal-dependent noise, soft-thresholding, adaptive denoising 
 

1. INTRODUCTION 
 
In a digital color camera, several factors cause signal-dependency 
of additive noise that contaminates its output images 1 ~ 3. The 
variance of the signal-dependent noise not only depends on signal 
intensity, but also differs among the color channels. It is very 
difficult to remove the signal-dependent noise selectively. This 
paper presents a new denoising approach that removes the actual 
signal-dependent noise selectively from camera’s output images. 

As the denoising approach, there are two major successful 
approaches. The first approach is to process wavelet coefficients of 
the image 4 ~ 8. The second is the variational approach 9 ~ 12. 
Recently, some researchers have studied a related but somewhat 
different variational problem of nonlinear image-decomposition, 
and have proposed its variational models 13 ~ 17. This image-
decomposition problem is to decompose an image into its multiple 
components: a structural component, a texture component and a 
residual component. The structural component corresponds to 
large objects in the image, and the texture component corresponds 
to fine image details showing periodicity and oscillation. Among 
various nonlinear image-decomposition models 13 ~ 17, there are 
successful nonlinear variational models based on the TV, which is 
considered promising as a pre-process for the post denoising. 

To solve the problem of removing the signal-dependent noise, 
this paper presents a new denoising approach via the nonlinear 
image-decomposition. At the first decomposition stage of this 
nonlinear decomposition-and-denoising approach, a noisy image is 

decomposed into its components so that the structural component 
corresponding to a cartoon image approximation may not be 
corrupted by the noise and the texture and the residual components 
may collect almost all the noise. As the type of the nonlinear 
image-decomposition, there are two possible types: additive 
decomposition and multiplicative decomposition. As for the 
nonlinear image-decomposition model described in detail later, the 
multiplicative decomposition is superior to the additive 
decomposition in that the residual component is much smaller 18, 
and hence this paper chooses the multiplicative decomposition. At 
the successive denoising stage, at each pixel, the structural 
component is utilized instead of the unknown true signal, to adapt 
the soft-thresholding-type denoising manipulation of the texture 
and the residual components to the signal-dependency of the noise. 
At the final image-synthesis stage, the structure component is 
combined with the denoised texture and residual components, and 
a denoised image is reproduced. The nonlinear decomposition-and-
denoising approach selectively removes the signal-dependent noise 
without not only blurring sharp edges but also destroying visually 
important textures. 

The nonlinear image-decomposition model, refereed to as the 
BV-L1 variational model 17, is considered proper for the pre-
process of the nonlinear decomposition-and-denoising approach. 
This model decomposes an image into its component belonging to 
BV and its component in L1. The BV and the L1 components 
correspond to the geometrical structure and the structural texture, 
respectively. The residual is not necessarily small, and should not 
be neglected. The BV-L1 model is adequate particularly to the 
much noise case; in such a case, the signal-dependent noise looks 
like the salt-and-pepper noise, and it shows the property of the 
impulsive noise. In such a case, the BV-L1 model removes the 
noise from the BV component almost perfectly. On the other hand, 
the L1 component and the residual are contaminated with the noise, 
and the effects of the noise are selectively removed from the L1 
component and the residual by utilizing the BV component. 
 

2. SIGNAL DEPENDENCY OF NOISE IN A DIGITAL 
COLOR CAMERA  

 
In a digital color camera, several factors cause signal-dependency 
of additive noise that contaminates its output images 1 ~ 3. The 
variance of the signal-dependent noise not only depends on signal 
intensity, but also differs among the three color channels. The 
signal-dependent noise is modeled as the additive noise model: 

1 (1)
, : Noisy observation (1 256), : Signal (0 255),

: Gaussian noise with zero mean unit variance,
: Standard deviation of noise,
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where the function w defines the signal-dependency of the additive 
noise and determines its standard deviation. The function w is 
different among the three color channels. Fig.1 shows typical 
examples of the measured noise’s signal-dependency functions, 
w’s, of a certain digital color camera, for the three primary color 
channels and the various ISO-sensitivity values. Fig.2(a) shows a 
noisy test color image produced by adding to the original noise-
free color image of Fig.2(g) signal-dependent noise artificially 
generated according to the signal-dependent noise model of Fig.1. 
As shown in Fig.1 and Fig.2(a), the camera’s noise is more 
noticeable in dark regions than in bright regions, and in the high 
ISO-sensitivity case the signal-dependent noise looks like the salt-
and-pepper noise and shows the property of the impulsive noise. 
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Fig.1. Measured noise’s signal-dependency functions, w’s, of a 
certain digital color camera for the three primary color channels 
and the various ISO-sensitivity values. 
 

3. NONLINEAR DECOMPOSITION-AND-DENOISING 
APPROACH 

 
The nonlinear decomposition-and-denoising approach selectively 
removes the signal-dependent noise of a digital color camera while 
preserving not only sharp edges but also visually important image 
textures. This chapter describes the concept and the outline of the 
approach. The approach is composed of the first nonlinear image-
decomposition stage, the second nonlinear denoising stage, and the 
final image-synthesis stage. 
 
3.1. Nonlinear Image-Decomposition Stage 
 
At the first nonlinear image-decomposition stage, a noisy image is 
decomposed into its two components: a structure component and a 
texture component, so that the separated structural component 
corresponding to a cartoon approximation of the image may hardly 
be contaminated by the noise and the separated texture component 
may collect most of the noise. As for the nonlinear image-
decomposition model, we employ the BV-L1 variational model 17, 
which is one of the most successful variational models. 

As the type of the image-decomposition, there are two possible 
types: the additive decomposition and the multiplicative 
decomposition. The additive image-decomposition is defined by 

1 (2)
, : Input image(1 256), : Structural component,

: Texture component,

F U V
F F U
V

 

whereas the multiplicative image-decomposition is defined by 

, 1 256 , 0 (3)F U V U V  
The BV-L1 variational model is originally proposed for the 
additive decomposition, but it is applicable to the multiplicative 
decomposition. With the log transformation, the problem of the 
multiplicative decomposition is converted into the problem of the 
additive decomposition, as follows: 

; log , log , log . (4)f u v f F u U v V  
The multiplicative decomposition problem is easily solved in the 
log domain, with the BV-L1 model. The residual D in the additive 
decomposition is defined by F - U - V - 1, whereas the residual D 
in the multiplicative decomposition is defined by F - U·V. As for 
the BV-L1 model, the multiplicative decomposition is superior to 
the additive decomposition in that the residual D is much smaller, 
and hence this paper employs the multiplicative decomposition. 
However, in the BV-L1 model the residual D is not necessarily 
small, and the denoising manipulation is applied to D. 

To decompose a color image, the BV-L1 variational model is 
independently applied to each primary color channel. For a noise-
free color image, its separated log texture components v’s of the 
three color channels show high inter-channel cross-correlations, 
whereas for a noisy color image its separated log texture 
components v’s show low inter-channel cross-correlations, and 
particularly in heavily noisy image regions local inter-channel 
cross-correlations show negative values. The nonlinear denoising 
stage utilizes this property. 
 
3.1.1. Multiplicative BV-L1 Image-Decomposition Model 
 
This image-decomposition model decomposes the log input f into 
the log structural geometrical component u and the log structural 
texture component v and the residual D = exp(f) - exp(u+v). To 
solve this image-decomposition problem, this model makes some 
assumptions about the two components u, v, as follows: 1) the log 
structural geometrical component u lives in the BV space, and 2) 
the log structural texture component v lives in the L1 space. For 
the impulsive noise, its TV norm is much larger than its L1 norm, 
and hence not only the structural textures but also the impulsive 
noise is collected in v, and the impulsive noise is almost 
completely removed from u; the BV-L1 model is fairly robust 
against the impulsive noise. The BV-L1 model 17 is formulated as 
the following variational problem of decomposing the log input f 
into the two components u, v. 

2 1

2

BV, L1

1inf , 0 , 0 . (5)
2 L Lu v

J u f u v v  

In the following, u and v are referred to as the BV component and 
the L1 component, respectively. In addition, the residual D is 
referred to as the L2 component. In this model, the L2 component 
D is not necessarily small, and hence should be taken into account. 
To solve (5), the decomposition algorithm is constructed as the 
alternate iterative algorithm with the Chambolle’s projection 
algorithm 12 and the soft-thresholding. The algorithm gives the 
unique minimizer of (5). 
 
3.2. Nonlinear Denoising Stage 
 
3.2.1. Adaptive Soft-Thresholding for the Log Texture Component 
 
The separated log texture component v of each primary color 
channel is separately manipulated. In addition, for each pixel, the 
separated structural component U is utilized instead of the 
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unknown true signal value S, to adapt the denoising manipulation 
of v to the signal dependency of the noise, and thus the signal-
dependent noise is selectively removed from it. 

In the separated log texture components of the three color 
channels, the noise causes small variations, and those variations 
are uncorrelated among the three color channels. To utilize these 
properties, we employ an adaptive soft-thresholding technique 
where for each pixel the soft-threshold is adaptively controlled 
according to the separated structural component and the locally 
estimated inter-channel cross-correlation of the log texture 
components. 

The adaptive soft-thresholding technique used for denoising v 
is constructed as described below. If an original noise-free signal S 
is smoothly varying, the multiplicative image-decomposition of a 
noisy input F will be approximately estimated as follows: 

1 1 1 1 (6)

; 1 , 1 1 .

F S w S N S N w S S U V

U S V N w S S
 

In the log domain, the separated log texture component v is 
estimated approximately by 

log log 1 1 . (7)v V N w U U  
In this case, v stems from the noise, and is expected to lie within 
the following range: 
log 1 1 log 1 1 , 0. (8)c w U U v c w U U c  

Taking it into account, this paper constructs the adaptive soft-
thresholding in the log domain, as follows: 
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where corv is defined as the minimum value among the three 
cross-correlation coefficients, locally estimated within a 3 by 3 
window for each pair of two primary colors. The multiplier 
parameter c is adaptively controlled according to corv. As corv 
gets smaller, the magnitude of the soft-threshold is increased; thus 
in noisy image regions, the noise’s effects are much removed from 
v. 
 
3.2.2. Adaptive Soft-Thresholding for the Residual 
 
The adaptive soft-thresholding technique used for denoising of the 
residual D is constructed as described below. If an original noise-
free signal S is smoothly varying, the residual D will stem from the 
noise, and it will be approximately estimated to be proportional to 
the noise: 

. (10)D F U V w S N  
Hence, D is expected to lie within the following range: 

1 1 , 0 . (11)r w U D r w U r  

Taking it into account, this paper constructs the adaptive soft-
thresholding, as follows: 
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3.2.3. Post-processing 
 
The adaptive soft-thresholding techniques sometimes produce 
isolated non-zero points in its denoised log texture v’ and the 
denoised residual D’. These isolated non-zero points are often 
perceived as visible granular artifacts in a denoised image. As the 
post-process of the adaptive soft-thresholding, such isolated non-
zero points are removed from v’ and D’. 
 
3.3. Image-Synthesis Stage 
 
At the final stage, the structure component U is combined with the 
denoised log texture component v’ and the denoised residual D’, 
and thus a denoised image is reproduced. The image-synthesis is 
performed as follows: 

exp . (13)F U v D  

 
4. EXPERIMENTAL SIMULATIONS 

 
Fig.2 shows the result of the denoising simulation. The noisy test 
image F of Fig.2(a) is produced by adding artificial signal-
dependent noise equivalent to the ISO 1600 sensitivity to the 
original noise-free image S of Fig.2(g), and is denoised by the 
nonlinear decomposition-and-denoising approach with the 
multiplicative BV-L1 decomposition model. The separated BV 
component U of Fig.2(b) is not corrupted by the noise, and most of 
the noise is concentrated in the separated L1 component V of 
Fig.2(c). The residual D of Fig.2(e) is also contaminated by the 
noise somewhat. In V and D, the noise appears as colored noise. As 
shown in Fig.2(d) and Fig.2(f), the adaptive soft-thresholding and 
the post-process remove the noise from V and D. This denoising 
approach removes the noise considerably, and reproduces the 
denoised image F’ of Fig.2(h), where sharp color edges are not 
much blurred and visually important major image textures are 
preserved to some extent. The peak SNR’s of the primary three 
color channels are improved by about 6.5 ~ 7.5 [dB]. 
 

5. CONCLUSIONS 
 
To remove signal-dependent noise of a digital camera, this paper 
presents a nonlinear decomposition-and-denoising approach with 
the multiplicative BV-L1 nonlinear image-decomposition 17. The 
approach, at the first stage, decomposes a noisy image into its 
structural component and its texture component, and then at the 
second stage utilizes the separated structural component to adapt 
the soft-thresholding-type denoising manipulation of the texture 
component and the residual to the signal dependency of the noise, 
and at the final stage combines the separated structure component 
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with the denoised texture component and the denoised residual, 
thus to reproduce a denoised image. In the high ISO-sensitivity 
case, the approach, particularly, performs very successfully, and 
selectively removes signal-dependent noise without blurring sharp 
edges and eliminating visually important textures.  
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(a) Noisy test image   F -1      (b) Separated BV component U -1 

R: 21.62 dB, G: 20.82 dB,       R: 27.09 dB, G: 26.45 dB, 
B: 24.11 dB                              B: 27.28 dB 

 
(c) Separated L1 component V   (d) Denoised L1 component V’ 

(c0=1.0) 

 
(e) Residual D                            (f) Denoised residual D’ 

(r0=0.7) 

 
 (g) Original noise-free image  S        (h) Denoised image F’-1 

R: 29.14 dB, G: 27.85 dB, 
B: 30.58 dB 

 
Fig.2. Denoising result of the noisy test image of the ISO 1600 
sensitivity by the nonlinear decomposition-and-denoising approach 
with the multiplicative BV-L1 image-decomposition model. 
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