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ABSTRACT
We develop a new vector-based shrinkage rule, based on the
concept of ”signal of interest”, for the removal of correlated
noise. The multivariate Bessel K Form density is used for
modeling the spatial correlations between complex wavelet
coefficients. The interscale dependencies between the coeffi-
cients are captured using a Hidden Markov Tree model. The
combined spatial and interscale model gives improvements
over recently proposed Hidden Markov Models for white
noise. The results show that correlated noise is suppressed
well while image details are being preserved.

Index Terms— Image restoration, Gaussian noise, corre-
lated noise, Hidden Markov models

I. INTRODUCTION
Digital cameras often produce images corrupted with

noise, originating from analogue components (sensors and
amplifiers) in bad lightening conditions, or at high ISO
settings. By colour demosaicing and digital post-processing
operations in the camera, the noise becomes correlated.
During the last two decades, multiresolution concepts like
wavelets have become a powerful tool for the removal of
noise, and many new techniques have emerged, e.g. [1]–[6].
These methods have concentrated on white (uncorrelated)
noise, resulting in simple and elegant pointwise shrinkage
rules. However, when applied on images with correlated
noise, these methods introduce too much smoothing, or do
not remove all of the noise.
In [7], [8], a technique is proposed that deals with ad-

ditive stationary correlated noise, by modeling the noise-
free wavelet coefficients using a multivariate Gaussian Scale
Mixture (GSM) and by treating the noise as multivariate
Gaussian. A vector-based shrinkage rule, is applied on local
windows of wavelet coefficients, and successfully removes
the noise while maintaining image details.
Recently proposed Hidden Markov Tree (HMT) Models

capture the interscale dependencies by modeling the Marko-
vian dependencies between coefficients along the wavelet
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tree structure, e.g. [2]–[4]. In [4], the spatial context of
wavelet coefficients is also incorporated into the HMT
model, by calculating the average energy of the neighbouring
coefficients of the given coefficient.
In this paper, we develop a denoising method for the

removal of correlated noise on images. We model the local
spatial correlations between noise-free wavelet coefficients
using theMultivariate Bessel K Form (MBKF) prior (Section
II). We extend the method of [6] to allow multivariate priors
(Section III). The notion of ”signal of interest” from [6]
allows us to distinguish smooth areas from edges/textures,
from the observed noisy coefficients. In Section IV we build
a HMT model upon this concept, resulting in a simple
and efficient two state Markov model, that captures the
propagation of relevant information along the wavelet tree.
We discuss some implementation aspects in Section V and
give visual results in Section VI.

II. BESSEL K FORM SPATIAL PRIOR

Due to the linearity of the wavelet transform, we have
the following relationship between the noise-free coefficients
xj , the noise wj and the observed noisy coefficients yj on
a given scale and orientation:

yj = xj +wj (1)

where a one-dimensional index j denotes the spatial position
(like raster scanning). The vectors xj , wj and yj are formed
by extracting wavelet coefficients in a local

√
d×√

d window
at position j. This way, the spatial correlations of both the
signal and the noise are modeled inside the local window.
wj is Gaussian noise N(0,Σw). xj is modeled using the
elliptically contoured Multivariate Bessel K Form Density
(MBKF) from [9] with pdf 1

f(x) =
2(2π)−d/2

Γ(τ)|Σx|1/2

(
Q(x)√

2

)τ−d/2

Kτ−d/2(
√
2Q(x))

(2)

1In [9] this density is called ”Generalized Laplace”. To avoid confusion
with the common definition of the Generalized Laplace from [1], [6], we
use the name Bessel K Form, as in [10], [11] for the univariate counterpart.
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where Q(x) =
√

xT Σ−1
x x, Km(u) is the modified Bessel

function of the second kind and order m (see [9], [12]), and
Γ(τ) =

∫
∞

0
zτ−1e−zdz is the Gamma function. For τ = 1,

(2) simplifies to the Multivariate Laplace distribution, used
in [12]. For the limit τ → ∞, (2) approaches the Gaussian
distribution N(0,Σx). The parameter range τ = ]0, 1] is
of special interest, because it allows us to model the highly
kurtotic non-Gaussian behaviour of wavelet coefficients. The
kurtosis is γ2 = 3 + 3/τ , which approaches +∞ for
small τ > 0. Furthermore, the MBKF admits the following
Gaussian Scale Mixture (GSM) representation [9]:

x
d
= z1/2u (3)

where ” d
=” means equality in distribution, u is Gaussian

N(0,Σx) and z is Gamma distributed Γ(α = τ, β = 1):

f(z) =
1

Γ(τ)
zτ−1e−z (4)

Finally, we estimate parameters Σy using maximum like-
lihood estimation (MLE), τ by matching the second and
fourth order cumulants of marginal distribution with the
observation, as explained in [11] and Σx using Σ̂x =
τ̂−1(Σ̂y − Σw). We further assume that Σw is known.

III. ”‘SIGNAL OF INTEREST”’ BASED
SHRINKAGE RULE

III-A. Definition of ”signal of interest”
Noise-free wavelet coefficients can be categorized into:
• Smooth areas, containing small coefficient magnitudes
• Edges and textures, exhibiting large coefficient magni-
tudes (we will call this signal of interest)

One way to distinguish both groups, is using a significance
map, e.g. [5], [6] for d = 1:

S(x) = I(|x|/σ ≥ T ) (5)

where T is a threshold, σ is the noise standard deviation
and I(x) is the indicator function. We propose the following
generalization for d > 1:

S(x) = I(||Cwx|| ≥ T ) (6)

where ||x|| =
√

xT x is the Frobenius-norm of x and Cw =

Σ
−1/2
w . A geometrical explanation is that ||Cwx|| = T

represents the equation of an ellipsoid in the d-dimensional
Euclidean space (Σw is positive definite), and S(x) tests
whether x is inside or outside the ellipsoid. In the following,
we will denote S(x) = i as hypothesis Hi, i = 0, 1.

III-B. Bayesian shrinkage rule
We now consider the following simple shrinkage rule:

x̂j = P(H1|yj)yj (7)

The heuristic motivation is as follows: each coefficient vector
is scaled with the probability that it represents signal of

interest. We note that for the assumed model, y follows an
infinite Gaussian Mixture (GM), since x follows a MBKF
distribution (see Section II) and w is Gaussian distributed.
By imposing that f(x|H0) is an infinite GM (and as a
consequence also f(y|H0)), we can avoid the (excessive) nu-
merical calculation of the convolution f(y|H0) = f(x|H0)�
f(w). This condition is satisfied by:

f(H0|x) = exp

(
− 1

2T 2
||Cwx||2

)
(8)

We can expand (7) to:

x̂j = yj −
(∫ +∞

0

f(z)P(H0|z)f(yj |H0, z)

f(yj)
dz

)
yj (9)

If we denote the normal density evaluated in y as
N(y;0,Σ), and using (8) we can write:

f(y|z) = N (y;0, zΣx +Σx)

f(y|H0, z) = N
(
y;0,

(
(zΣx)

−1 + (T 2Σw)
−1

)
−1

+Σw

)
Using the above equations, it is straightforward to show that:

P(H0|z) =
( ∣∣(zΣx)

−1
∣∣

|(zΣx)−1 + (T 2Σw)−1|

)1/2

(10)

which allows us to calculate the probability that the signal
of interest is present/absent on the considered band:

P(H0) = 1− P(H1) =

∫
∞

0

P(H0|z)f(z)dz (11)

IV. HIDDEN MARKOV TREE MODEL FOR
INTERSCALE DEPENDENCIES

A detailed explanation of Hidden Markov Tree models
can be found elsewhere (e.g. [2], [13]). Here we will only
discuss the application to our problem. First, we want to
characterize the interscale dependencies of wavelet coeffi-
cients, along a given wavelet tree (see Fig. 1). We could
accomplish this by simply modeling the joint probability
density of the whole wavelet tree, and by applying a vector-
based shrinkage rule like (7). However, in many cases,
the multivariate BKF density (or any other GSM model)
does not provide a good fitting to the multiscale data,
because the joint probability histograms of coefficients are
generally not elliptically contoured anymore. Working with
high-dimensional probability densities also requires larger
covariance matrices (with size d × d), and more parameters
to estimate. At a given point, it becomes impossible to find
good estimates because 1) estimation becomes less reliable
because there is not enough data and 2) overfitting of the
data becomes a real problem. Therefore, we want to track
only the key-dependencies between the wavelet coefficients,
i.e. intrascale (spatially) and interscale. The HMT models
Markovian dependencies between wavelet coefficients in
the wavelet tree, thereby reducing the number of model
parameters. With each wavelet coefficient, a hidden node
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Fig. 1. Independent HMT models associated with the 6 orientations
of the Dual Tree Complex Wavelet Transform (DTCWT) of [15]
(background: complex coefficient magnitudes, gray boxes: real
parts of the corresponding complex wavelets)

is associated. Every hidden node is considered to be in a
set of M distinct states. The hidden nodes are connected
in a directed tree starting from the root node, and it is
assumed that the state of each node only depends on the state
of the parent node (Markov property, see Fig. 2a). Due to
computational constraints, it is preferable to limit the number
of states. We use the significance measures S(x) as hidden
nodes for the Markov model, following Malfait’s idea from
[14] for spatial Markov Random Fields, also used in [5].
This results in a two state HMT model with two hidden
layers (Fig. 2), parametrized by Θ = {Σx,n, τn, αn,i, ε

(k)
n }

where n = 1, ..., N denotes the scale, αn,i = P(H
(n)
i ), the

probability that the signal of interest is absent/present on
scale n and ε

(k)
n is the state transition probability matrix

for scale n. k = 1, ..., 4 represents the child index of the
hidden node on scale n (see Fig. 2a). By assigning different
transition probability matrices to each child node of a given
node, we can better adapt the HMT model to the spatial
context of the finer scale. The parameters Σx,n and τn are
estimated once for every scale, while αn,i, ε

(k)
n are estimated

recursively using the Baum-Welch algorithm [2], [13]. We
found experimentally that for many images, (ε(k)

n )1,1 ≈ 1

and (ε
(k)
n )1,2 ≈ 0. This means that, once a coefficient is

insignificant, it remains insignificant when we go to a finer
scale.

V. IMPLEMENTATION ASPECTS
Eq. (9) has no closed-form analytical expression and

requires integration over an infinite interval. However, by
noting that f(z) decays fast, we can choose an upper bound
for the integration and calculate the integral numerically.
We found experimentally that the points zl = exp(−3 +
6l/L), l = 1, ..., L provide a good approximation, even with
L small (e.g. L = 4).
To avoid numerical underflow in the upward/downward

algorithm, used for likelihood computation in the HMT
model, a scaling procedure is required [13]. For our spatial
prior, we found that for large d, underflow already arises
when evaluating normal densities f(y|z) and f(y|z,H0),

(a)

(b)

Fig. 2. (a) proposed HMT structure (s-nodes represent the signif-
icance map, z-nodes represent the local variance, black nodes are
wavelet coefficients) (b) Two-state model

Fig. 3. Denoising results for correlated noise, from left to right and from
top to bottom: the original image (cropped out), image with bandpass
filtered noise (PSNR = 20.17dB), GSM-BLS using Full Steerable
Pyramids [8] (PSNR = 29.96dB), the proposed method using DTCWT
(PSNR = 29.88dB)

and the scaling procedure subsequently fails, because the
input probabilities are 0. We solve this problem by adding an
extra scaling factor e4d to the normal density, which will be
cancelled automatically later in the upward/downward steps.

VI. RESULTS
The results for this paper are produced using the Dual Tree

Complex Wavelet transform of [15] using 6-tap Q-shift fil-
ters. For simplicity, we assumed that the real and imaginary
parts of the complex wavelet coefficients are statistically
independent, resulting in 12 independent HMT models for
the 6 orientations. The HMT training step is performed on
the noisy image. We use overlapping 3× 3 spatial windows
(d = 9), and only estimate the central window coefficient
using (7). For this window size, we optimized the threshold
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Fig. 4. Denoising results for white noise, from left to right and from
top to bottom: the original image (cropped out), the noisy image σ =

35 (PSNR = 17.48dB), HMT method of [2] using decimated DWT
(PSNR = 27.75dB), method of [6] using undecimated DWT (PSNR =

29.31dB), GSM-BLS [7] using Full Steerable Pyramids (PSNR =

30.15dB), the proposed method using DTCWT (PSNR = 30.20dB)

T experimentally, and obtained T = 2.66. In Fig. 3,
a result for bandpass filtered noise is given, with Power
Spectral Density PSD(fx, fy) ∼ exp(−60|f2

x+f2
y −0.05|).

Here fx and fy are respectively the horizontal and vertical
frequencies. The noise covariance matrix is available to the
algorithms. By exploiting the interscale dependencies, the
smooth areas remain smooth after denoising and contain
less wavelet artifacts. In Fig. 4, we compare the visual
denoising performance for images with white noise (i.e. Σw

is diagonal). The HMT method of [2] still leaves some
noise on the image. This is mainly caused by the lack
of spatial information in the estimation of the posterior
state probabilities of the hidden nodes. In our approach, by
incorporating spatial correlations, the denoising performance
using Complex Wavelets (with redundancy 4) is raised to the
same level as the Full Steerable Pyramid (with redundancy
18.67 for 8 orientations) from [7]. Finally, on a Pentium IV
2.4GHz, our C++ implementation takes 3.5 s for denoising
a 512× 512 grayscale image.

VII. CONCLUSION
A new image denoising method for the removal of cor-

related noise has been presented. The multivariate Bessel K
Form density is capable of modeling the local spatial corre-
lations between wavelet coefficients, and its use is practical
since it has a Gaussian Scale Mixture representation where

the hidden multiplier is Gamma distributed. A significance
measure allows us to quantify the relevant information in
a noisy image, and a Hidden Markov Tree model built on
this measure, captures the propagation of this information
along the wavelet coefficient tree. The results show that, by
using a combined spatial and interscale prior, image details
are better reconstructed while smooth areas in the original
image remain smooth after denoising.
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