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ABSTRACT
We introduce a framework for image enhancement, which

smooths images while preserving edge information. Domain

(spatial) and range (feature) information are combined in one

single measure in a principled way. This measure turns out to

be the geodesic distance between pixels, calculated on weighted

orthogonal domains. The weight function is computed to cap-

ture the underlying structure of the image manifold, but al-

lowing at the same time to efficiently solve, using the Fast

Marching algorithm on orthogonal domains, the eikonal equa-

tion to obtain the geodesic distances. We show promising re-

sults in edge-preserving denoising of gray scale, color and

texture images.

Index Terms— Adaptive smoothing filters, geodesic dis-

tance, Fast Marching Method, edge-preserving filtering.

1. INTRODUCTION

The goal of denoising by filtering, probably the most funda-

mental operation in image processing, is to remove noise from

images while preserving the signal content. Low-pass filter-

ing using Gaussian kernels, for instance, exploits the fact that

for neighboring pixels signal components are highly corre-

lated, while noise components tend to be uncorrelated. Hence

computing weighted averages of pixel values in the neigh-

borhood removes noise while preserving signal. This model

does not take into account abrupt local variations of the im-

age (such edges) and therefore is not suitable for application

where edge-preserving smoothing is required.

One well established approach to exploit local informa-

tion in the filtering process is anisotropic diffusion [1]. By

solving a locally weighted diffusion equation, images are se-

lectively smoothed. In other words pixels are averaged using

space dependent kernels, whose size and weight coefficients

are computed using local information. A somehow related ap-

proach was proposed in [2], where space depend binary ker-

nels are used for anisotropic averaging (G-neighbors). In [3]
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bilateral filters are introduced as nonlinear filters which com-

bine domain and range filtering. The convolution kernels are

in fact products of two component: domain (which represent

spatial closeness) and range (which represent similarity in the

feature space).

In this paper we combine range and domain information

using geodesic distances between pixels, evaluated on weighted

orthogonal domains. The proposed algorithm is computation-

ally efficient (distances are computed using Fast Marching

on orthogonal domains, as opposed to [4] where triangulated

domains are used) and independent on the number of image

channels. In addition a relation is established between range

and domain components via the concept of geodesic distance

and cost of crossing pixels during distance calculation.

2. GEODESIC DISTANCES ON WEIGHTED
DOMAINS AND EDGE PRESERVING FILTERS

Define an image I as the mapping :

I : R
2 → R

n (1)

I : (x, y) → (
I1(x, y), I2(x, y), . . . , In(x, y)

)
where n is the number of channels. We can now introduce the

matrix G defined as follows:

G = (gij) =

⎛
⎝

∑n
i=1

(
Ii
x

)2 ∑n
i=1 Ii

xIi
y

∑n
i=1 Ii

xIi
y

∑n
i=1

(
Ii
y

)2

⎞
⎠ (2)

where Ii
x � ∂Ii

∂x and Ii
y � ∂Ii

∂y . The matrix G is positive

semidefinite, since it is symmetric and all its principal minors

are non negative. Hence both its eigenvalues λ1 and λ2 are

non negative. These eigenvalues contain information about

the multichannel gradients of the image I [5].

We propose to use the biggest eigenvalue λ1 ≥ λ2 to

weight an orthogonal domain and to compute distances on

this domain. Distances on orthogonal domain can be com-

puted by solving an eikonal equation with appropriate bound-

ary conditions:

|∇T (x, y)| = λ1(x, y) (3)
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(a) (b) (c) (d)

Fig. 1. (a) An image of the statue of liberty with highlighted in orange a window 51×51 center at pixel (120,238). (b) Geodesic

distances from the center pixel to the rest of the pixels within the window. (c) Filter coefficients obtained according to (8) setting

σ = 1. (d) 3D view of the filter window.

The eigenvalue λ1(x, y) gives the local weights used in arc-

lenght calcualtion: ds2 = λ2
1(x, y)(dx2 + dy2). By setting

as boundary condition T (x0, y0) = 0 and solving for T gives

distances from the point (x0, y0) to the point (x, y):

T (x, y) =
∫ (x,y)

(x0,y0)

ds (4)

If the weight function is constant over the whole domain, the

solution of the eikonal equation is exactly the Euclidean dis-

tance. In our case, since the weight function λ1(x, y) is pro-

portional to the multichannel gradient, the distance between

two pixels separated by high gradient will be higher that the

distance between two pixels belonging to the same low gradi-

ent area.

The process of filtering an image I(x) (x = (x, y)) with

an isotropic low pass filter can be described through the fol-

lowing convolution operation (if I is multichannel the convo-

lution is intended channel by channel):

Iout(x) =
1

c(x)

∫ +∞

−∞
I(x′)κ(x,x′)dx′ (5)

where the normalization coefficient c(x) is defined so that the

DC component of the signal is preserved. Hence:

c(x) =
∫ +∞

−∞
κ(x,x′)dx′ (6)

If κ(x,x′) = κ(x − x′), the filter is shift invariant and the

low-pass operation is performed in an isotropic way. The

image is therefore smoothed isotropically, without preserving

the edges.

In order to preserve the edges in the filtering process, we

propose to define the kernel function κ as a function of the

geodesic distance between two points on the domain as de-

fined in (4) :

κ(x,x′) = f(
∫ x′

x

ds) (7)

For example using a Gaussian function of the geodesic dis-

tance between two points κ becomes:

κ(x,x′) = e−
1
2

( R x′
x ds

σ

)2

(8)

The eikonal equation in (3) has to be solved once for every

pixel in the image in order to compute geodesic distances

to the neighbors within the filter window. The Fast March-

ing Method [6] is an efficient algorithm to solve the eikonal

equation with complexity O(n log n), where n is the number

of points in the orthogonal grid. In our case we can restrict

the orthogonal grid to a window of the size of the filter, cen-

tered around each pixel. The total complexity of the distance

computation process is therefore O(ni ·nw log nw), where ni

is the number of pixel in the image and nw is the number of

pixel in the filter support window. Assuming fixed filter size,

the distance computation complexity grows therefore linearly

with the image size.

3. COMPARISON WITH PREVIOUS WORK

3.1. Beltrami Flow

The Beltrami flow [4] originates from minimizing the area of

a 2D Riemannian manifold embedded in R
n+2 (where n is

the number of channels of the image I). The points on the

manifold are specified by
(
x, y, I1(x, y), · · · , In(x, y)

)
and

therefore the metric of the manifold is:

M=(mij)=

⎛
⎝ 1 +

∑n
i=1

(
Ii
x

)2 ∑n
i=1 Ii

xIi
y

∑n
i=1 Ii

xIi
y 1 +

∑n
i=1

(
Ii
y

)2

⎞
⎠

(9)

Note that mij = δij + gij , where gij was defined in (2). The

Beltrami flow is then derived as steepest descent minimization

of the area of the manifold:

S =
∫ ∫ √

det(M)dxdy (10)

The PDE of the flow, as results of the minimization process

is:

Ii
t =

1√
det(M)

Div
(√

det(M)M−1∇Ii
)

(11)

In [7] an iterative implementation of the PDE is replaced with

a one step filter using a short time kernel. It turns out that the
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filter kernel can be written as:

κBE(x,x′, t) =
H

t
e−

1
4

(
R x′
x ds)2

t (12)

where now ds = m11dx2 + 2m12dxdy + m22dy2 is an arc-

length element on the manifold and geodesic distances are

now intended as distances on the manifold.

The main difference with respect to the method that we

propose in this paper consists in the fact that the eikonal equa-

tion has to be solved on non orthogonal coordinate system

(the manifold). This is due to the term 2m12dxdy in the arc-

length calculation. The presence of obtuse angles may occur

and therefore a preprocessing stage is necessary to split every

obtuse angle in two acute ones.

In our model we embed the information about the geom-

etry of the manifold in the weight term λ1(x, y), avoiding

therefore this problem. Geodesic distances are in fact evalu-

ated on orthogonal weighted domains and the Fast Marching

Method can be used in its original formulation.

3.2. Bilateral Filters

Bilateral Filtering [3] uses a filter kernel composed by two

terms: the domain term captures information about spatial

distances between pixels and the range term captures infor-

mation about distances in the feature space. This kernel can

be written as:

κBI(x,x′) = e
− 1

2

(
||x−x′||

σd

)2

e−
1
2

(
||I(x)−I(x′)||

σr

)2

(13)

The main asset of this approach is that it does not rely on

image derivatives. On the other hand the computation com-

plexity is dependent on the number of channel of the image

(i.e. the dimension of the feature space). With the approach

proposed in this paper, we combine domain and range infor-

mation in the weight function λ1(x, y) in a more principled

way. In addition the geodesic distances computation is inde-

pendent of the dimension of the feature space.

4. EXPERIMENTAL RESULTS

In this section we present an evaluation of the proposed al-

gorithm on gray scale, color and texture images. In all the

experiments a filter window 11 × 11 pixels is used and σ in

equation (8) is set to 1.1 Fig. 2 is meant to show the capability

to denoise a gray scale image, while preserving edges. In the

output image (Fig. 2 (b)), edges are still sharp and small scale

details, as for example the face of the driver or the steering

wheel, are preserved, while noise is removed.

Fig. 3 shows the potential of the proposed algorithm for

removing texture from color images. In Fig. 3 (b) texture is

removed from the cheek, the mouth and the ears of the puma,

1The pictures of the experimental results can be seen full size at:

http://vision.ece.ucsb.edu/∼lbertelli/icip/geodesic filtering.

(a)

(b)

Fig. 2. (a) Noisy gray scale image. (b) Proposed algorithm

output using the filter kernel (size 11× 11) in (8) with σ = 1.

(a) (b)

(c) (d)

Fig. 3. (a,c) Original images (480 × 640). (b,d) Filtered im-

ages using the filter kernel (size 11 × 11) in (8) with σ = 1.

Running time is ≈ 32 s on a P4 3 Ghz with 1 GB of RAM.
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(a) (b) (c)

Fig. 4. Outputs of filtering the noisy image in Fig. 2(a) using the rescaled weight η(x, y). (a) k = 0, (b) k = 50, (c) k = 500.

In (c) fine scale details, as the steering wheel, are perfectly preserved, even better than in Fig. 2(a) where rescaling is not used.

while sharp edges are preserved, Notice that the whiskers,

even if much smaller than the filter size, are still crisp after

filtering. Similar considerations apply to Fig. 3 (c,d), where

fine texture is removed from the snout and the forehead of the

bear, while most of the details about the wet fur are preserved.

One interesting property of bilateral filters [3] is that, by

changing the parameters σd and σr in (13), more importance

can be given to range filtering than domain filtering or vice

versa. These two parameters, which control the shapes of the

two gaussian components of the filter kernel, can assume ar-

bitrary values and it is difficult to relate them in a meaningful

way. Within the framework proposed in this paper, we in-

troduce the following rescale of the weight function λ1(x, y),
so that range and domain filtering are meaningfully related

through the concept of geodesic distance between pixels. Let

us define the rescaled weight function:

η(x, y) =
k

λMAX
λ1(x, y) + 1 (14)

where λMAX = max λ1(x, y). Since η(x, y) is used to weigh

the image domain in geodesic distance computation, can be

thought as the cost of crossing each pixel. The higher the cost

the faster distances will increase. k is chosen so that, if 1
is the cost of crossing a flat region (λ(x, y) = 0), k + 1 is

the cost of crossing the strongest edge (λ(x, y) = λMAX ).

The parameter k acts as weight between domain and range

contribution. If k � 1 then η(x, y) ≈ 1 over the whole image

and geodesic distances become euclidean distances. Fig. 4(a)

shows the output of the filter (for the noisy image in Fig. 2(a))

using the rescaled weight function η and k = 0. The filter

kernel is isotropic and the domain component is dominant.

Increasing k (Fig. 4(b,c) with k=50 and k=500 respectively),

crossing edges becomes more and more costly and therefore

the weight of the range component is increased.

5. CONCLUSIONS

We introduced a computationally efficient and mathematically

sound framework for smoothing images while preserving edges.

Geodesic distances between pixels, efficiently computed on

weighted orthogonal domains using the Fast Marching algo-

rithm, are used as combination of domain and range informa-

tion. A relationship between domain and range component

is established using the concept of geodesic distance (and

cost of crossing pixels), via a rescaling of the weight func-

tion. Experimental results in denoising and texture removal

are shown.
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