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ABSTRACT

We propose a nonlinear diffusion method based on the gradi-

ent vector field construction to remove noises in image while

preserving fine details. The blocky effect and over-smoothing,

as usually seen in images processed by diffusion operators,

are greatly reduced by our method. Results obtained from

various images, including synthetic and magnetic resonance

imaging (MRI), are used to demonstrate the performance of

our new method. Comparing it with other diffusion methods,

we find it obtains better performance in terms of removing

noises without destroying detail features of images.

Index Terms— Noise removal, diffusion, PDE

1. INTRODUCTION

Nonlinear diffusion methods have proven to be very useful

in many applications of image processings, from enhancing

medical images [1] to improving image analyses [2, 3]. De-

note the observed image by u, a diffusion term in the form

of g(|∇u|2) is often used with g being a nonnegative func-

tion. The nonlinear diffusion scheme of Perona and Malik [4]

has been used extensively in multiscale description of im-

ages, image segmentations, edge detections, and image en-

hancements. Their method can keep the edges relatively un-

changed and its edge detector outperforms the linear Canny

edge detector. The work was then extended to 3D images

by Gerig et al. [1] and to vector-valued images by Sapiro

and Ringach [5] to process 3D magnetic resonance imaging

(MRI) data and multispectral MRI images. The Perona-Malik

method, though effective in removing noise, has the draw-

back of creating blocky effects [6]. This artifacts, in fact, are

due to the trade-off between noise removal and edge preser-

vation embedded in the method. Other methods have been
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proposed to address this problem, one of them was Weick-

ert [7], in which directional diffusion methods were shown to

generate better results in enhancing line-like structures. Other

techniques such as the multiscale anisotropic diffusion equa-

tion [8] have also been developed to circumvent this problem.

Rudin-Osher-Fatemi [9] developed another nonlinear diffu-

sion method by minimizing the total variation (TV) of the

images under certain conditions. This approach introduces

nonlinear diffusion filters and has been used as a regulariza-

tion method for many other applications where one seeks to

identify discontinuous functions [10, 11].

2. NONLINEAR DIFFUSION AND GRADIENT
VECTOR FIELD CONSTRUCTION

2.1. Nonlinear Diffusion

The basic idea behind these diffusion methods originated from

a well known physical heat transfer process which equili-

brates concentration differences without creating or destroy-

ing mass. This process can be modeled by partial differen-

tial equations, and their solutions describe the heat transfer at

any particular time. Let the image domain be an open rectan-

gle Ω = (0, a1) × (0, a2), Γ ≡ ∂Ω be its boundary and the

observed image I(x) be represented by a bounded function

I : Ω −→ R. Then an evoluting version u(x, t) of I(x) with

a scale time parameter t ≥ 0 is obtained as the solution of the

following diffusion equations

ut = div · (D(∇u)∇u)
u(x, 0) = I(x)

< D(∇u)∇u, n > = 0
(1)

where I is the initial condition under the reflecting boundary

conditions. In particular, the classical Perona and Malik dif-

fusion equation [4] is

ut = div · (g(|∇u|)∇u), (2)

u(x, t = 0) = I. (3)
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Here the diffusion coefficient g(·) (also called flux term) is a

nonnegative function of the magnitude of the image gradient

∇u =
√

u2
x + u2

y and generally set to be

g(|∇u|2) =
1√

1 + |∇u|2/λ2
(4)

where λ is a trade-off term that can be set depending on the es-

timation of the noise level. In (4), |∇u| acts like a fuzzy edge

detector since pixels that have large |∇u| values are more

likely to be an edge. The role of g(|∇u|) is to adaptively

control the smoothing effect. In order to avoid destroying the

fine details of the image, this adaptive smoothing control must

achieve two goals, (1) smooth homogeneous areas selectively,

i.e., less smoothings in areas with strong image features such

as edges and boundaries, and more smoothings in the other

areas; and (2) preserve edges by controlling the direction of

smoothing, i.e., minimal smoothings in the direction across

the image features, and maximal smoothings in the direction

along the image features.

In fact, we can see how the Perona-Malik diffusion ac-

complishes the above requirements if the smoothing equation

is expressed in a new [η, ξ] coordinates. Let η be the direction

of the gradient and ξ be the direction perpendicular to the gra-

dient, i.e., the direction of a level set. Assume that g(|∇u|)
has the form of (4). Then the evolution equation (2) can be

expressed in terms of uηη and uξξ as

ut =
1√

1 + ( |∇u|2
λ )

2

(
1

1 + ( |∇u|2
λ )

2 uηη + uξξ

)
(5)

where uηη and uξξ denote the second order derivative of u
with respect to η and ξ, respectively. This demonstrates how

the Perona-Malik equation accomplishes the two goals: (1)

when |∇u| is large, the first term 1√
1+

(
|∇u|2

λ

)2
allows less

smoothings, and when |∇u| is small, there is more smooth-

ings. Thus it adaptively controls the degree of smoothings;

(2) two factors are assigned to the two different smoothing

directions, namely, η and ξ, to adaptively smooth the image

in the direction along and across edges.

2.2. Gradient Vector Field Construction

In this paper, we propose a nonlinear diffusion method that

has better performance in the sense that it can reduce noises

and blocking effects while still preserve the edges and bound-

aries. The method is motivated by the gradient vector field

(GVF) mechanism introduced in [12], which is proposed as

a method to increase the capture range of the standard snake

(”active contour”) method and allow the snake to deform to

convexity. GVF snake achieves the goals by introducing a

new external force v based on the gradient vector and ob-

tained from the following equations based on Euler equations

ut = μ∇2u − (f2
x + f2

y )(u − fx)

vt = μ∇2v − (f2
x + f2

y )(v − fy), (6)

where f is the edge force, which usually depends on |∇I|2.

Note that the first term in (6), ∇2u, has an isotropic smooth-

ing effect on the field v, which is desirable for homogeneous

areas, but not for edges and boundaries as they may be over-

smoothed. The second term in (6) forces the field v to be

close to the edge map, ∇f , in order to preserve edges. Be-

cause the gradient information from the object boundaries is

propagated throughout the image by the diffusion process, the

GVF model has a much larger ”capture range”.

3. EDGE ENHANCED NONLINEAR DIFFUSION

We now compare our diffusion method with that of the Perona-

Malik (PM) diffusion. It is known that the PM diffusion pro-

cess could create blocky effects in the resultant images. Under

the framework of regularized nonlinear diffusion, our method

aims to remove the noises and preserve edges, while reduc-

ing the blocky effects. Let u(x, y) be the true noise-free im-

age and I(x, y) be the observed image with noise n(x, y) for

x, y ∈ Ω
I(x, y) = u(x, y) + n(x, y). (7)

For simplicity, we assume that the variance of noise is known

as σ2 ≈ ∫
Ω

(u − I)2dΩ. In practice we can estimate the vari-

ance of the noise by some methods [13]. When the region

of image under consideration is smooth, then |∇f |2 is small

and (6) can be written as

ut ≈ μ∇2u, vt ≈ μ∇2v. (8a)

For a large |∇f |2 usually found around the edges, (6) be-

comes approximately

ut ≈ (fx, fy), vt ≈ (fx, fy). (8b)

Such construction achieves the goal of adaptively adjusting

the weight of smoothings depending on the image features.

In our method, we have an additional edge preserving term,

ut = μdiv · (g(|∇Gσ0 ∗ u|)∇u) − |∇u|2(u − I),
u(x, y, t = 0) = I (9)

where G is a 2D Gaussian kernel such that

Gσ0(x, y) = Cσ−1
0 exp(−(x2 + y2)/4σ0) (10)

and μ of (9) represents the tradeoff between smoothings and

edge preservation. By replacing the gradient |∇u| in (2) by

|∇Gσ0 ∗ u|, we avoid instability and inconsistence [14]. This

diffusion process achieves two objectives: (1) when it is near

an edge, the second term will play a dominant role and thus
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adaptively preserves the edges. At the same time, the diffu-

sion coefficient g(·) is also used to reduce smoothness and

enhance edges when the edges are nearby; (2) when it is in a

homogeneous region it will reduce the noise and smooth the

image. Furthermore, the force term (u − I) ensures the al-

gorithm have a nontrivial steady state, therefore eliminating

the need to choose a stop time. From this observation we can

go on updating the value of μ dynamically to reach a steady

state. By multiplying (9) by (u − I) and integrating by parts

over Ω, we then have

μ =
|∇u|2σ2∫

g(|∇Gσ0 ∗ u|)∇udiv · (u − I)dΩ
. (11)

4. EXPERIMENT RESULTS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. (a) Original image, (b) degraded by additive Gaussian

noise (SNR = 8.14), (c-f) results of the Perona-Malik method,

the ROF method, the FPDE method, and our method, re-

spectively. Visually, our method removes much of the noises

without blurring the edges. (g-i) are the results of the ROF

method, the FPDE method, and our method on the highly de-

graded image (a), (SNR = 3.73).

Our diffusion equations (9) are solved numerically using

an iterative approach. We employed the efficient AOS scheme

to calculate the nonlinear diffused image and then updated the

process by adding the edge preserving term. We summarize

the steps of our method in Table 1 where α is a predetermined

threshold to stop the iteration. We apply our method to a syn-

Table 1. Pseudo code of our proposed algorithm

For i = 1 to maximum iteration number,

1. Discrete ∇ui as:

[
ui(m + 1, n) − ui(m,n)

Δx
,
ui(m,n + 1) − ui(m,n)

Δy
]

and the diffusivity coefficients g(|∇Gσ0 ∗ ui|)
2. Update

μ =
|∇ui|2σ2∫

g(|∇Gσ0 ∗ u|)∇uidiv · (ui − I)dΩ

3. Update the nonlinear diffused image by AOS method

ui+1 = AOS(ui, g)

4. Update the image as ui+1 = μui+1−|∇ui|2(ui−I)

5. STOP if ‖ui − ui+1‖ < α

6. i = i + 1.

thetic image,shown in Fig. 1(a), which is degraded by additive

Gaussian noise, Fig. 1(b). The signal to noise ratio (SNR) is

8.14 dB. The noisy image is processed by the Perona-Malik

method, ROF, FPDE, and our method. The results are shown

in Fig. 1(c-f), respectively. The differences between our edge

enhanced diffusion and the other three are fairly clear. Our

method preserves and enhances the edges while efficiently re-

ducing the noise and avoiding the blocky effects. In particular,

the two small circles inside the cross have sharper boundaries

and are closer to true image in our method than images de-

rived from the others. Similar improvement is also observed

from the triangle at the lower left corner. Moreover, when we

decrease the SNR, our method show obvious improvements

over the other methods. Fig. 1(g-i) are the diffused results

obtained on degraded images with SNR of 3.73db by using

ROF, FPDE, and our method. They further demonstrates that

our method is more robust to noises and adaptive to image

structures.

As a second example, we apply the proposed method on

a rat brain MRI image, Fig. 2 The raw image, Fig. 2(a), was

obtained from a 4.7T small animal MRI scanner. We first use

a contrast-limited adaptive histogram equalization (CLAHE)

to enhance image contrasts for better visual comparison. The

raw image is corrupted by noises and contains complex struc-

tures. Fig. 2(b) and (c) show the results given by the Perona-

Malik method and the FPDE approach. Though the image af-
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(a) (b) (c)

(d) (e) (f)

Fig. 2. MRI of rat brain (a) original, (b) image after con-

trast enhancement by CLAHE, (c) the Perona-Malik diffusion

method, (d) the FPDE method, (e) the ROF method, and (f)

our method.

ter the FPDE method is doing well in the central part, it leaves

small cluster points in other areas. The ROF method produces

a clean image as shown in Fig. 2(d). However, it does not gen-

erate clear structure information and has a reduced contrast.

In comparison, our approach produces a result with reduced

noise and well-preserved fine structure, Fig. 2(e).

5. CONCLUSION

We developed an edge enhancing noise removal diffusion method

in this paper. Our method achieves good results in remov-

ing image noise while preserving and enhancing image details

such as edges and contours without smoothing out important

structure information and is less sensitive to noise level. By

comparing our method with the Perona-Malik method and re-

lated methods, an fourth-order partial different equation dif-

fusion, and the well-know regularized TV method by Rudin-

Osher-Fatemi, we found the new method demonstrate better

performance on both test images and real MR images.
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