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ABSTRACT

Mihcak et al proposed a low complexity but powerful image
denoising algorithm LAWML based on the decimated wave-
let transform(DWT). The shortcoming of LAWML is to det-
ermine the global optimal neighboring window size by
experimenting. We improve on LAWML using Stein’s unbi-
ased risk estimate(SURE). Our method can automatically
estimate an optimal neighboring window for every wavelet
subband. Its denoising performance also surpasses LAWML
because the subband adaptive window is superior to the 
global window. Furthermore, our method on the DWT is
extended to on the dual-tree complex wavelet transform
(DT-CWT). Experimental results indicate that our method
(DT-CWT) delivers the comparable or better performance
than some of the already published state-of-the-art denois-
ing algorithms.

Index Terms— Image denoising, wavelet transforms, dual-
tree, adaptive method

1. INTRODUCTION 

It is a classical signal estimation problem to remove additive
white Gaussian noise(AWGN) in images. Wavelet-based
methods significantly improve the estimation results since
wavelet decompositions simplify the statistical properties of
images. A number of researchers have found that wavelet
coefficients of images have similar marginal distributions
and interscale dependencies. Therefore, it is possible to
model the prior distributions of noiseless wavelet coeff-
icients. Recently, many models of noiseless wavelet coeff-
icients have been proposed. The most famous ones include
generalized Gaussian distribution(GGD) model[1], Markov
random field (MRF)[2] and hidden Markov tree(HMT)[3]
models, Gaussian scale mixture (GSM) model[4], bivariate
distribution model[5] etc. The estimation results depends 
heavily on the accurateness of the model. The higher is the 
accurateness of the model, the better is the effect. In general, 
the more accurate model suffers the greater computational
burden. Mihcak et al who were motivated by EQ image
compression algorithm proposed a simple doubly stochastic
process model and applied it to image denoising[6]. They

gave a low complexity but powerful image denoising algo-
rithm LAWML in terms of the doubly stochastic process
model. The shortcoming of LAWML is that it needs to det-
ermine a global optimal neighboring window size by exp-
erimenting. This process is inefficient. We improve on
LAWML using Stein’s unbiased risk estimate(SURE)[7].
Our method can automatically compute an optimal neighbo- 
ring window for every wavelet subband. This adaptive
method not only avoids determining the window size by
experimenting, but also outperforms LAWML because the 
subband adaptive window is superior to the global window.
Then our proposed adaptive method is extended to the dual-
tree complex wavelet transform(DT-CWT) from the deci-
mated wavelet transform(DWT). The experimental results
indicate that our method on the DT-CWT yields the com-
parable or better performance compared with some of the
recent state of art image denoising methods because the DT-
CWT has the advantages of shift invariance and direction
selectivity over the DWT.

2. LAWML APPROACH 

We simply introduce LAWML algorithm[6] in order to fac-
ilitate the discussion of the proposed method. Suppose an 
image {Xij} is contaminated with Gaussian random noise
with zero mean and variance 2

n :
1, , , 1, ,   (1)ij ij ijY X i I j J

where { }ij is independent and identically Gaussian(normal)

distributed (iid ) 2(0, )nN . We apply an orthonormal wave-
let transform to Equation (1). Let { }ij , {  and {  repr-
esent the orthonormal wavelet coefficients of the noiseless
image, noisy image and noise, respectively. {  is still iid

}ijw }ijn

}ijn
2(0, )nN due to orthonormality of the wavelet transform.

Given the variance field of the noiseless coeff-
icients { (

2{ ( , )}i j
, )}i j , the minimum mean-squared error(MMSE)

estimator  of ( , )i j ( , )i j  is given:
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In fact, is unknown and its estimate is a 
crux. Mihcak et al estimated using a local
neighborhood

2{ ( , )}i j
2 ( , )i j

( , )i j which is a square window and its
center is at w(i,j).
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2 2

0 , ( , )
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, ( , )

( , ) arg max ( ( , ) | )

1max 0, ( , )                 (3)
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n
k l i j

i j P w k l
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where 2( | )P is the Gaussian distribution with zero mean
and variance 2

n
2 , and M is the number of coefficients

in ( )k . Then, the estimate  of ( , )i j ( , )i j  is obtained

using  instead of in Equation (2). Mihcak
et al referred the MMSE-like estimate as LAWML.
Practically,

2
( , )i j 2 ( , )i j

n is also unknown in Equation (2). A good
estimator for n is the median of absolute deviation(MAD)
using the highest level wavelet coefficients[8].

median(| ( , ) |)  ( ( , ) subband )  (4)
0.6745

n
w i j w i j HH

3. PROPOSED ALGORITHM 

The contribution of our method on the DWT is to determine
the optimal neighboring window size of every wavelet sub-
band for LAWML. The procedure of the derivation of the
optimal neighboring window size for every subband is the
following. For ease of notation, let us arrange the Ns noisy
wavelet coefficients from subband s, { : ,s i jw i jw
indices corresponding to subband }s into the one-dimen-
sional vector { : 1, , }s nw n Nw s . Let us next combine
the Ns unknown noiseless coefficients { : , indiciesi j i j
corresponding to subband }s  from subband s into the corre-
sponding one-dimensional vector { : 1, , }s n n Ns .

Stein showed[7] that , for almost any fixed estimator s

based on the data ws, the expected loss(i.e. risk) 
2

2
{ s sE } can be estimated unbiasedly. In general case,

the noise standard deviation 1n , we have that
2 2

22
( ) 2 ( )  (5)s s s s sE N E g w g w

where 1( ) { } sN
ss n n sgg w w n

n
n

g
w

g .

We have from Equation (2) that for the nth wavelet coeff-
icient wn:
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is an unbiased estimate of the risk on subband s where L is 
the neighborhood window size( L is an odd number and 
greater than 1, for example, 3, 5, 7 etc):

2

2
{ }s sE

{ ( ,s )E SURE Lw . Then we choose the neighboring window
size Ls on subband s which minimize . Accor-
dingly,

( , )sSURE Lw

arg min ( , )       (10)s
s

L
L SURE Lw

The above Ls are derived assuming 1n . For data with
non-unit variance, the coefficients are first standardized by
the estimate n  obtained using Equation (4). 

4. RESULTS ON THE DECIMATED WAVELET 
TRANSFORM

We have compared the results of our method with that of 
LAWML. The decimated wavelet transform(DWT) is used
with Daubechies’ least asymmetric compactly-supported
wavelet with eight vanishing moments with four scales. The
512 512 standard test images Goldhill, Barbara and Man-
drill are chosen(see Fig. 1). They are contaminated with 
Gaussian random noise with standard deviations 10, 20, 30, 
50, 75 and 100. The optimal neighboring window sizes of
LAWML are determined by experimenting. The neighboring
window sizes of the proposed method are calculated with
Equation (10) and the largest window size which is
searched for every subband is limited to 25 25 . The noise
standard deviation is estimated with Equation (4). Our
results are measured by the peak signal-to-noise ratio(PSNR)
in decibels(dB) defined as 

2

10
25510*log ( )           (11)PSNR dB
MSE

where 2

1 1

1 ( ( , ) ( , ))
I J

i j

MSE X i j X i j
IJ

,  here , X  is  the 

original image, X is the estimate of X, and I*J is the num-
ber of pixels. The denoised image is closer to the original
when PSNR is higher. Table 1 shows the PSNR performance
of the two denoising methods and the optimal window sizes
of LAWML. Obviously, the PSNRs which  the proposed ada- 
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(a)                          (b)                           (c) 
Fig.1. The original test images with 512 512
pixels. (a) Goldhill; (b) Barbara; (c) Mandrill.

LAWML Proposed
Goldhill

10 32.54 5 5 32.57
20 29.18 7 7 29.32
30 27.41 9 9 27.63
50 25.38 13 13 25.76
75 23.92 17 17 24.35

100 22.98 25 25 23.39
Barbara

10 32.85 5 5 32.88
20 28.81 7 7 28.93
30 26.62 7 7 26.82
50 24.12 9 9 24.46
75 22.41 13 13 22.84

100 21.32 15 15 21.86
Mandrill

10 29.50 3 3 29.43
20 26.00 5 5 25.97
30 24.05 9 9 24.08
50 21.92 9 9 22.00
75 20.53 13 13 20.68

100 19.76 17 17 19.97
Table 1. Denoising results(PSNR) on the DWT
for Goldhill, Barbara and Mandrill.

ptive method yields are higher for all noise levels except for 
Mandrill with noise deviations 10 and 20. The larger neigh-
boring windows are needed when noise levels are increased.

5. EXTENSION TO COMPLEX WAVELET 
COEFFICIENTS

The dual-tree complex wavelet transform (DT-CWT) [9] is 
a relatively recent enhancement to the decimated wavelet 
transform (DWT). It is a slightly redundant transform with a 
redundancy factor of only 2d for d-dimensional signals and 
expands an image in terms of a complex wavelet with
complementary real and imaginary parts. Its basis functions
have directional selectivity property at ,15 45 , and 

, which the regular critically sampled transform does
not have. The key advantages of the DT-CWT over the
DWT  are  its  shift  invariance and directional selectivity. It 

75

ProbShrink
(UWT)

BiShrink
(DT-CWT)

Proposed
 (DT-CWT)

Goldhill
10 32.50 32.80 33.04
20 29.65 29.92 30.03
30 27.99 28.36 28.46
50 26.15 26.54 26.62
75 24.79 25.18 25.27

100 23.85 25.24 24.33
Barbara

10 33.27 33.30 33.68
20 29.32 29.66 30.03
30 27.14 27.61 27.96
50 24.44 25.21 25.58
75 22.78 23.53 23.83

100 21.94 22.48 22.73
Mandrill

10 28.77 29.29 29.65
20 25.65 26.14 26.40
30 23.87 24.30 24.56
50 21.81 22.24 22.56
75 20.62 20.95 21.25

100 19.96 20.21 20.50
Table 2. Denoising results(PSNR) with the UWT or DT-
CWT  for Goldhill, Barbara  and  Mandrill  for the three 
denoising methods

means that DT-CWT-based algorithms will automatically
be almost shift invariant, thus reducing many of the artifacts
of the critically sampled DWT. The previous adaptive 
method can be extended to the DT-CWT. The procedure
can be described as follows. For the real parts of every
subband, we first compute the optimal neighboring window
size Ls with Equation (10). In terms of Ls, the real and 
imaginary parts’ variance fields of every subband can be 
calculated with Equation (3), then the real and imaginary
parts of every subband are shrinked separately according to 
Equation (2). The experimental results show that the
proposed method surpasses some of the already published
best denoising methods.

We have compared our results with the current state of 
art schemes ProbShrink[10] and BiShrink[5]. ProbShrink
uses the nondecimated wavelet transform(UWT) which
employs Daubechies symmlet wavelet with eight vanishing
moments with four scales. BiShrink and the proposed 
method use the DT-CWT with six scales. ProbShrink and
BiShrink Matlab implementations are available at the
web[11][12]. We still choose the same images with the 
same noise levels as the previous section. Table 2 shows the
PSNRs of the three denoising methods.

It can be observed from Table 2 that the proposed 
method(DT-CWT) consistently yields the highest PSNRs
for the  three test  images  in  all noise  levels. The proposed 
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Fig. 2. PSNR curves of the proposed method
(on  the  DWT  and DT-CWT) and the other

two methods for Barbara.

method on the DT-CWT is also significantly superior to that
on the DWT. The largest PSNR gain of the proposed 
method on the DT-CWT is 0.94 for Goldhill, 1.14 for 
Barbara and 0.57 for Mandrill greater than on the DWT.
The PSNR curves for Barbara are shown in Fig. 2 and the
PSNR gain curves for Barbara are shown in Fig. 3. It is
obvious that the DWT-based method is inferior to the other
methods, but its PSNRs are comparable with ProbShrink
when 45 . We have also compared our results with that
of BLS-GSM method[4]. The BLS-GSM with the 8-
orientation steerable pyramid yields slightly better PSNR
performance than the proposed method on the DT-CWT.

6. CONCLUSION 

We have proposed a new adaptive image denoising algo-
rithm. It is an improvement on LAWML proposed by
Mihcak et al on the DWT. Our method can automatically
determine the optimal neighboring window size for every
wavelet subband while LAWML can only determine the 
global optimal neighboring window size by experimenting.
The denoising performance of our method also outperforms
LAWML because the subband adaptive neighboring window 
is superior to the global window. Furthermore, our method
is extended to the DT-CWT from the DWT. Experimental
results indicate that the proposed adaptive denoising method
(DT-CWT) yields the comparable or better performance
than some of the already published best denoising algo-
rithms.
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