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ABSTRACT 
 
The present paper presents a novel approach for gait 
identification using 3D data and Krawtchouk moments to 
generate the descriptor feature vectors. The gait sequence is 
captured by a stereoscopic camera and the resulting 2.5D 
data are processed to generate a 3D hull of the captured 
silhouette. The 3D Protrusion Transform is then proposed 
that generates a silhouette image containing protrusion 
information. Finally, the descriptor vector of the extended 
silhouette is calculated using the Krawtchouk moments. 
Experimental evaluation illustrates that the proposed 
scheme is highly efficient in identifying gait sequences 
when compared to state of the art approaches. 
 
Index Terms— Gait recognition, geodesic distance, 
Krawtchouk moments, protrusion map. 
 

1. INTRODUCTION 
 

During the latest years there has been a growing interest in 
the identification of the humans based on their way of 
walking. The results of this research field can be directly 
applied for surveillance, identity verification and in medical 
applications as well. Most of the recent gait analysis 
methods can be divided into two main categories; model 
based and feature based methods.  

Model-based approaches, study static and dynamic body 
parameters of the human locomotion. In the literature  many 
different shapes have been used to assemble the human 
body. In [1], a combination of different shapes is used for 
resembling the human body. In [2], a gait recognition 
method has been proposed based on Procrustes shape 
analysis. Furthermore, there are model-based approaches 
that compute gait dynamics parameters from gait sequences 
like stride length, stride speed and cadence [3].  

On the other hand, feature based techniques do not rely 
on the assumption of any specific model of the human body 
for gait analysis. Initially, the binary map of the moving 
subjects is computed and a feature vector is extracted from 
the silhouette sequences using several techniques. Noise 
removal and noramalization procedures follow so as to 
generate, scaling, translation and in some cases rotation 
invariant descriptors. In the final stage, the feature-based 
approaches use a matching method for finding the similarity 

between two input gait sequences. The methods proposed in 
the past include simple temporal correlation, full volumetric 
correlation on partitioned subsequent silhouette frames [4], 
linear time normalization [5] and dynamic time warping [6]. 
For the calculation of the distance between the gait feature 
vectors different techniques can  be applied. In most cases, 
Euclidean distance was used as a metric for distance 
calculation, but there are also reports on using procrustes 
distance [2] and symmetric group distances [7]. 
The present paper proposes a novel gait identification and 
authentication method based on the use of novel 2D and 3D 
features of the image silhouette sequence based on the 
weighted Krawtchouk moments that are well known for 
their compactness and discriminating power. The 3D data 
that are obtained by a stereo camera are transformed using 
the novel 3D Protrusion Transform (3D-PT). The proposed 
algorithm is tested and evaluated in two datasets and was 
also compared to the state-of-the-art methods in gait 
analysis and recognition.  
 

2. PRE-PROCESSING OF GAIT SEQUENCES 
 

2.1. Binary silhouette extraction 
 

In order to analyze the human movement, the walking 
subject silhouette needs to be extracted from the input 
image sequence. 

Initially, the background is estimated using a temporal 
median filter on the image sequence, assuming static 
background and moving foreground. Next, the silhouettes 
are extracted by comparing each frame of the sequence with 
the background. The areas where the difference of their 
intensity from the background image is larger than a 
predefined threshold are considered as silhouette areas. The 
generated silhouette images are noisy. Therefore 
morphological filtering, based on anti-extensive connected 
operators [8] is applied so as to denoise the silhouette 
sequences. Finally, potential shadows are removed by 
analyzing the sequence in the HSV color space [9]. 
 
2.2. Generating 3D geodesic silhouettes 
 

Using the aforementioned techniques a binary silhouette 
sequence SilB  is generated as illustrated in Figure 1a. In the 
proposed framework 2.5D information is available since the 
gait sequence is captured by a stereoscopic camera. Using 
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Delaunay triangulation on the 2.5D data a 3D triangulated 
hull of the silhouette is generated that is further processed 
using the proposed 3D Protrusion Transform. 
 

(a) (b)  
Figure 1. Extracted silhouettes, a) binary silhouette, b) geodesic 

silhouette 
Initially, the triangulated version of the 3D silhouette is 

generated. Adjacent pixels of the silhouette are grouped into 
triangles. Next, the dual graph G = (V, E) of the given mesh 
is generated [10], where V and E are the dual vertices and 
edges. A dual vertex is the center of mass of a triangle and a 
dual edge links two adjacent triangles. The degree of 
protrusion for each dual vertex results from equation (1):                                                                  
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where p(u) is the protrusion degree of dual vertex u, 
g(u,vi) is the geodesic distance of u from dual vertex vi and 
area(vi) is the area of triangle that corresponds to the dual 
vertex vi. 

Let us define ( )Sil
kG u  a function that refers to the dual 

vertices, to be given by:                                                                               
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The 3D-PT for the silhouette image, denoted as 

( , )Sil
kG x y , is simply a weighted average of the dual vertices 

that are adjacent to the corresponding pixel ( , )x y , i.e.:                                                                 
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where i =1,..8 denotes the number of adjacent pixels ( , )x y  
to be weighted, ( , , )w x y u  is the weighting function and 
ˆ ( , )Sil

kG x y  represent the geodesic silhouette image at frame 
k, as illustrated in Figure 1b, which takes values in the 
interval of [m,255]. The higher the intensity value of a pixel 
in Figure 1b, the higher its protrusion degree. In the 
proposed approach m was selected to be equal to 60.  
 

2.3. Normalization 
In the final step of the preprocessing stage and before 
feature extraction, the preprocessed binary ( SilB ) or 3D 
silhouette images ( ˆ SilG ) are scaled and aligned to the center 
[5],[6]. In the proposed paper all silhouette gait sequences 
are normalized to the same resolution as in [4] and the 
silhouette is aligned to the center of the frame. 

 

3. GAIT SEQUENCE FEATURE EXTRACTION  
 

In the present paper, the use of descriptors based on the 
weighted Krawtchouk moments is proposed. In all cases, 
the input to the feature extraction system is assumed to be 
either the binary silhouettes ( Sil

kB ) or the 3D-distributed 
silhouettes ( ˆ Sil

kG ) when the 3D-PT is used. 
For almost all recent approaches on gait analysis, after 

feature extraction the original gait sequence cannot be 
reconstructed. In the suggested approach, the use of a new 
set of orthogonal moments is proposed based on the discrete 
classical weighted Krawtchouk polynomials [11]. The 
orthogonality of the proposed moments assures minimal 
information redundancy. In most cases, Krawtchouk 
transform is used to extract local features of images [11]. 
The Krawtchouk moments Qnm of order (n+m) are 
computed using the weighted Krawtchouk polynomials for a 
silhouette image (binary or 3D) with intensity function 

( , )Sil x y  by [11]:                                                
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where nK , mK  are the weighted Krawtchouk 
polynomials, and (N-1)x(M-1) represents the pixel size of 
the silhouette image ( , )Sil x y . A more detailed analysis of 
Krawtchouk moments and their computational complexity is 
presented in [11].  

Krawtchouk moments can be used to extract local 
information of the images by varying the parameters N and 
M. Parameter N can be used to increase the extraction of 
silhouette image in the horizontal axis. Larger N provides 
more information on the silhouette image in the horizontal 
axis, whereas the parameter M extracts local informaton of 
the silhouette image in the vertical axis. For the 
experiments, values for N=R/15 and M=C/3 were used, 
where R and C denote the number of rows and columns of 
the silhouette image, respectively.  
Krawtchouk transform is proposed for feature extraction, 
due to its very high discriminative power. Krawtchouk 
transformation is scale and rotation dependent. However, 
silhouette sequences are pre-scaled and aligned to the 
center, thus the Krawtchouk transform is unaffected by 
scaling. Furthermore, the input gait sequences are captured 
in a near fronto-parallel view and thus rotation does not 
affect the results of the Krawtchouk transform. 
 

4. SIGNATURE MATCHING 
 

The following notations are used in this section: the term 
gallery is used to refer to the set of reference sequences, 
whereas the test or unknown sequences to be verified or 
identified are termed probe sequence. In this paper, the gait 
cycle is detected using a similar approach to [6], using 
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autocorrelation of the input periodic signal. Instead of 
measuring only the sum of the foreground pixels in a 
temporal manner, the time series of the width of the 
silhouette sequence was also calculated. Then, the mean 
value of these signals formed the final gait period of the 
current gait sequence.  

Each probe sequence is initially partitioned into several 
full gait cycle segments and the distance between each 
segment and the gallery sequence is computed separately. 
This approach can be considered as a brute-force attempt to 
match a pattern of segmented feature vectors (segmentation 
using gait cycle) by shifting them over a gallery sequence 
vector. The main purpose of this shifting is to find the 
minimum distance (or maximum similarity) between the 
probe and the gallery sequence. 

Let , P TF , ,  TGF  represent the feature vectors of the probe 
with NP frames and the gallery sequence with NG frames 
respectively, and T denote the Krawtchouk transform. The 
probe sequence is partitioned into consecutive subsequences 
of PT  adjacent frames, where PT  is the estimated period of 
the probe sequence. Also, let the k -th probe subsequence 
be denoted as ( 1)

( ,  ) ,  ,  { ,..., }P PkT k Tk
P T P T P TF F F  and the gallery 

sequence of NG frames be denoted as 1
, ,  ,  { ,..., }GN

G T G T G TF F F . 
Then, the distance metric between the k-th subsequence, 
and the gallery sequence: 
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where G0,..., N 1l , S denotes the size of a  Probe/Gallery 
feature vector F, and P P  N Tm  represents the number of 
probe subsequences.  

The above equation (7) indirectly supposes that the probe 
and gallery sequences are aligned in phase. After computing 
all distances between probe segments and gallery sequences 
of feature vectors, the median, [4] of the distances is taken 
as the final distance )Gallery,obe(PrDT  between the 
probe and the gallery sequence.                                                 
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where m denotes the number of distances calculated 
between the probe subsequences and the whole gallery 
sequence. In the above equation (8), smaller distance means 
a closer match between the probe and the gallery sequence. 
 

5. EXPERIMENTAL RESULTS 
 

The proposed methods was evaluated on two different 
databases: a) the publicly available HumanID “Gait 
Challenge” dataset [16], and b) the proprietary large indoor 
HUMABIO dataset. 

Since the HumanID “Gait Challenge” dataset includes 
only monoscopic image sequences it cannot be used to 
evaluate the proposed scheme using the 3D-PT. However, 

the Krawtchouk descriptor efficiency on binary silhouettes 
was evaluated using this database, so as to generate 
comparative results with state-of-the-art approaches. In an 
identification scenario, a score vector for a given probe gait 
sequence is calculated, that contains the distance of the 
probe sequence from all the gallery sequences that exist in a 
database. The gallery sequence that exhibits the minimum 
distance from the probe sequence is identified as the 
correspondent sequence to the probe sequence. 

In the USF’s Gait Challenge Database, the gallery 
sequences were used as the systems knowledge base and the 
Probe sequences as the ones that should be recognized by 
comparing their descriptors to the gallery set. The available 
gallery sequences include (C, G) cement or grass surface, 
(A, B) shoe type A or B and (L, R) two different view 
points. In the performed experiments we used the set GAR 
as the gallery. The probe set is defined using seven 
experiments A-G of increasing difficulty. Experiment A 
differs from the gallery only in terms of the view, B of shoe 
type, C of both shoe type and view, D of surface, E surface 
and shoe type, F of surface and viewpoint and G of all 
surface, shoe type and viewpoint. 

For evaluation of the proposed approach, Cumulative 
Match Scores (CMS) are reported at ranks 1 and 5. Rank 1 
performance illustrates the probability of correctly 
identifying subjects in the first place of the ranking score 
list and the rank 5 illustrates the percentage of correctly 
identifying subjects in one of the first five places. 

Table 1 illustrates rank 1 and 5 results of the proposed 
approach on binary silhouettes (KR) compared to the 
approaches (CMU) [12], (LTN-A) [5], and (BASE) [4]. It is 
obvious that the proposed approach based on Krawtchouk 
moments performs better in almost all experiments.  

Table 1. Comparative results for the Krawtchouk transform on 
binary silhouettes (the number of subjects in each set is reported in 
squared brackets) 
Probe Set Rank 1 Rank 1-5 

Gallery: GAR KR CMU LTN-A BASE KR CMU LTN-A BASE 

A (GAL)  [71] 96 87 89 79 100 100 99 96 

B (GBR)  [41] 85 81 71 66 93 90 81 81 

C (GBL)   [41] 76 66 56 56 89 83 78 76 

D (CAR)   [70] 30 21 21 29 63 59 50 61 

E (CBR)   [44] 27 19 26 24 66 50 57 55 

F (CAL)   [70] 20 27 15 30 49 53 35 46 

G (CBL)   [44] 21 23 10 10 48 43 33 33 

Figure 2 illustrates detailed results on the identification 
rate of the proposed method on binary silhouettes when 
compared to the baseline algorithm [4] for two experiments. 
From the above results it can be concluded that the 
proposed method based on Krawtchouk moments 
outperforms the state-of-the-art approaches. It should be 
noted that until now all results refer to processing binary 
silhouettes in the “Gait Challenge” database. 
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Unfortunately the proposed 3D-PT approach cannot be 
directly compared to the state-of-the-art approaches since it 
reports also depth information. However, experimental 
results have been extracted for the 3D-PT in the HUMABIO 
database and are compared with the results that are 
extracted using the Krawtchouk descriptor without using the 
3D information (i.e. on binary silhouettes), that outperform 
the state-of-the-art approach as aforementioned.  

 
Figure 2. Identification rate of the proposed method on binary 
silhouettes (KW) for two experiments (A, G) compared to the 
baseline algorithm [4]. 

The proprietary HUMABIO gait database consists of 
sequences of 75 subjects. The available sequences include 
(C) normal surface, (CL, PA) shoe type classic or slipper, 
(BF, NB) carrying a briefcase or not and (H) when the 
subject wears a hat. In this paper two experiments on this 
database are demonstrated. The experiment A addresses the 
difference with hat and the experiment B addresses the 
briefcase difference between the gallery and the probe 
sequence. In all cases the gallery sequence is consisted of a 
classic shoe type (CL) with no briefcase (NB) and not 
wearing a hat (C-CL-NB). 

Figure 3 illustrates detailed results on the identification 
rate of the 3D-PT when compared to the algorithm that uses 
the Krawtchouk descriptors on binary silhouettes. As 
illustrated an increased identification rate can be expected 
when using the 3D-PT. 

 

6. CONCLUSIONS 
 

In this paper a novel feature-based gait recognition 
framework was presented that uses the 2.5D information of 
the captured sequence captured by a stereo camera. This 
information is initially transformed into a 3D hull and then 
the 3D protrusion transform is proposed to generate the 
“geodesic” silhouette. The feature vector of the gait 
sequence is generated, by calculating the Krawtchouk 
moments of the new enhanced silhouette. Experimental 
results demonstrate the efficiency of the proposed method 
when compared to state of the art approaches. 

 

 
Figure 3. Identification rate of the 3D-PT method (3D-PT) for two 
experiments (A, B), compared to the algorithm that uses the 
Krawtchouk descriptors on binary silhouettes (KW). 
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