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ABSTRACT

This paper presents a novel approach for gait recognition based on
the matching of body components. The human body components
are studied separately and are shown to have unequal discrimination
power. Several approaches are presented for the combination of the
results obtained from different body components into a common dis-
tance metric for the evaluation of similarity between gait sequences.
A method is also proposed for the determination of the weighting of
the various body components based on their contribution to recogni-
tion performance. Using the best performing of the proposed meth-
ods, improved recognition performance is achieved.

Index Terms— human gait, recognition, verification.

1. INTRODUCTION

Gait recognition [1] is a fairly new technique for biometric identifi-
cation based on the walking style of individuals. Recognition based
on human gait has several advantages related to the unobtrusiveness
and the ease with which gait information can be captured. Unlike
other biometrics, such as face, iris, fingerprints, gait can be captured
from a distant camera, without drawing the attention of the observed
subject.

A few early attempts on gait recognition were presented in [2,
3, 4]. In [2], gait patterns were extracted from spatiotemporal image
volumes in order to outline the contours of walking subjects. These
contours were used for gait recognition. In [3], a template matching
method based on an eigenspace representation of gait was proposed.
In [4], phase information of gait features was extracted, based on
optical flow, and was subsequently used for gait recognition.

In [5], a gait recognition method was proposed using recovered
static body parameters. The static parameters that were used in [5]
were the height, the distance between head and pelvis, the maximum
distance between pelvis and feet and the distance between the feet.
However, gait dynamics were not used and no attempt was made to
quantify the contribution of each of these parameter in recognition
performance.

One of the first methods that attempted to divide the human body
into components that are treated separately was presented in [6]. In
that work, a silhouette is considered to consist of seven ellipses.
They study the behavior of each of these ellipses throughout the
walking period in terms of the change of the magnitude compo-
nent and the phase component obtained from Fourier Transform, as
well as the discrimination power of each of these components. Fea-
ture vectors derived from the magnitude and phase components were
used in person identification and gender classification tests, and pro-
duced good results based on a relatively small data set.

In [7], manually extracted and labelled silhouettes were used
based on the USF HumanID Gait Challenge data set [8]. Although

the manual silhouettes provide much more accurate representations
of human shape, the results reported in [7] are inferior to those ob-
tained using automatically extracted binary silhouettes. This is due
to the fact that, in the automatically extracted binary silhouettes,
there are correlated errors which contribute to the recognition per-
formance. Consequently, more research needs to be conducted using
the manually extracted and labelled silhouettes, which do not suffer
from noise and background interference, in order to reliably deter-
mine what type of information carries discrimination power.

In this paper, we use the manual silhouettes of [7] in order to in-
vestigate the contribution of each body component of a walking per-
son to the recognition performance of a gait recognition system. We
provide a detailed analysis of the role and the contribution of each
body component by reporting recognition results of systems based
on each one of the body components. We also propose several ways
to combine the results obtained using the independent body compo-
nents, and we show that the best performing combination achieves
better results than the system in [7] on the same manual silhouette
data set.

The paper is organized as follows. Section 2 describes the component-
wise comparison between two manual silhouettes. Section 3 presents
the matching of gait styles for two silhouette sequences. Section 4
reports the detailed results using the proposed system. Finally, con-
clusions are drawn in section 5.

2. COMPONENT-WISE COMPARISON

The manual silhouettes consist of body components which can be
clearly distinguished from one another, such as those presented in
Fig. 1. On the other hand, the binary silhouettes contain limited in-
formation and are also plagued by error pixels due to the imperfect
background subtraction. The availability of manually segmented and
labelled silhouettes, for the the HumanID Gait Challenge data set,
allows a more reliable investigation of issues related to the discrimi-
nation power of body components in gait recognition.

Fig. 1. Manual silhouettes.

The baseline algorithm in [8] uses the ratio S(pi, gj) of the in-
tersection over the union of two binary silhouettes as a measure of
the similarity between them, i.e.,
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S(pi, gj) =
pi ∩ gj

pi ∪ gj
(1)

where gj , pi denote binary silhouettes from the gallery and probe set
respectively, and j, i are silhouette indices running from 0 to the end
of the walking cycle. The intersection and the union are calculated in
terms of the number of pixels. The value of this ratio ranges within
[0, 1], with 0 representing no overlap between the two silhouettes,
and 1 implying an identical match.

Recently, in [7], manual silhouettes are used to construct sil-
houettes with higher resolution than the binary ones, and study the
quality of silhouettes on some difficult probe sets. Meanwhile, the
authors of [7] apply to the manual silhouettes the same approach that
was taken in [8] using binary silhouettes, i.e., entire shape of silhou-
ettes when calculating the similarity ratio.

In this paper, we take a different approach that exploits the avail-
ability of manually-segmented and labelled human body components.
Specifically, first we calculate distances between silhouettes on a
component by component basis and subsequently, we combine the
component-wise distances in order to determine the final distance
between two silhouettes. Using component-wise comparison, better
recognition results can be achieved, since the similarity ratio of the
entire body of two manual silhouettes does not reflect the difference
among individual components. Suppose that in Fig 1, the first and
the third silhouettes in the bottom row have identical area for the
lower body, which includes thighs, legs, and feet. Although the sim-
ilarity ratio measured on the entire body will consider the two silhou-
ettes as identical, the ratio determined using each body component
separately will be able to discriminate between the silhouettes.

In practice, we adopted a distance metric to describe the resem-
blance between two silhouettes with respect to a certain body com-
ponent, namely,

dα(pαi, gαj) = 1 − pαi ∩ gαj

pαi ∪ gαj
, α = 1, 2, · · · , 8, (2)

where gαj is a body component of a manual silhouette from the
gallery set and pαi is a body component of a manual silhouette
from the probe set. The index α refers to one of the body com-
ponents. Therefore, the right-hand side of equation (2) is carried out
component-wise. The correspondence is tabulated in Table 2. Also,
the value of the distance ratio is between 0 and 1, and a smaller dis-
tance means a closer match for the relevant components.

α body component

1 head

2 torso

3 left arm

4 right arm

5 left thigh

6 left leg

7 right thigh

8 right leg

Table 1. The correspondence of each body component with the in-
dex α.

3. GAIT STYLE MATCHING USING HUMAN BODY
COMPONENT WEIGHTING

After calculating the distances between the corresponding body com-
ponents, we formed a component distance vector

dij = [d1(p1i, g1j d2(p2i, g2j) . . . d8(p8i, g8j)]
T

(3)

We tested several approaches for the combination of the individual
component distances into a single distance that quantify the dissim-
ilarity between two silhouettes. Specifically, the total distance be-
tween two silhouettes was taken to be equal to the median, min, max,
and a weighted sum of the distances corresponding to each body part.
Among all approaches, the weighted sum gave the best results. How-
ever, for reasons of completeness, we present the results for the rest
of the combination approaches in the experimental results section.
The total distance between a pair of manual silhouettes (pi, gj) was
calculated as

d̃(pi, gj) = WT dij (4)

where

W = [w1, w2, · · · , w8]
T

(5)

is a weight vector. In equation (4), the weighted sum of the distances
is being taken over all body components, with each dα(pi, gj), α =
1, · · · , 8, being weighted by a coefficient wα. It is expected that
some body parts are more reliable or carry more discrimination power
than others. For instance, the right arm rarely appears, or does not
appear at all, during one walking cycle for most subjects, and there-
fore it is reasonable to use a factor in order to appropriately weight
its contribution.

So far, two types of distances have been introduced as shown in
equations (2) and (4). The next step is to calculate the distance be-
tween gait sequences based on (4). Note that the component-based
distance d̃(pi, gj) in (4) is calculated on pairs of silhouettes (i, j)
from two different gait sequences. However, in practice, the number
of silhouettes from a gait sequence might be greater or smaller than
that from another gait sequence depending on the subjects’ walk-
ing pace. Therefore, before we can calculate the distance between
these two gait sequences, we need to determine the correspondence
between silhouettes from the two gait sequences that are to be com-
pared.

This can be achieved using a rule, which makes sure that each
silhouette pi from the gait sequence of subject p is associated with
an appropriate silhouette gj from another gait sequence of subject
g. The process for determining the correspondence of silhouettes
from the compared gait sequences is based on linear time normaliza-
tion [9]. Let T, R be the number of silhouettes in a gait cycle of the
probe and gallery sequence respectively. Then if R < T , i = j · T

R
,

whereas if R > T , j = i · R
T

.

Let F denote the set of pairs (i, j) determined as above. Once
the correspondence between silhouettes from the probe and gallery
sequences is established and the set F is constructed, the final dis-
tance between the nth probe subject and the rth gallery subject is
calculated as

D(n, r) =
1

NF

∑
(i,j)∈F

d̃(pi, gj) (6)

and NF is the cardinality of F . A gait recognition system based on
the above distance metric will be seen to yield considerable gains in
terms of recognition performance.
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4. OPTIMAL DETERMINATION OF WEIGHTING
COEFFICIENTS

For the purpose of determination of the weights in (5), we use the
gallery set as the training set, since the gallery set contains all the
subjects that appear in the probe sets. We define a component-wise
distance between the nth and the rth subject:

Dα(n, r) =
1

NF

∑
(i,j)∈F

dα(pαi, gαj) (7)

Note that the index α in equation (7) is included in order to em-
phasize that only one body component is involved in the determi-
nation of the component-wise distance between two subjects. This
distance, i.e. Dα(n, r), is subsequently used for the determination
of the weighting coefficient of the corresponding body component.
Specifically, for the nth subject in the gallery set, we calculate the
distance with each one of the rest of the subjects in the gallery set
using (7), and obtain a matrix Qn as follows:

Qn = {qn(α,l)}

=

⎡
⎢⎣

D1(n, 1) · · · D1(n, l) · · · D1(n, Ng − 1)
...

...
...

...
...

D8(n, 1) · · · D8(n, l) · · · D8(n, Ng − 1)

⎤
⎥⎦ (8)

where Ng is the number of subjects in the gallery set, n, l ∈ [1, Ng],
and l �= n. Then, an 8-dimensional vector bn is derived from each
Qn such that

bn =
1

Ng − 1

⎡
⎣

Ng−1∑
l=1

qn(1,l), · · · ,

Ng−1∑
l=1

qn(8,l)

⎤
⎦

T

(9)

Essentially, the elements of the above vector are the average component-
by-component distances of the gallery subject n to the rest of the
subjects in the gallery. Apparently, the greater the average distance
for a specific component, the more it should contribute to the deter-
mination of the final distance using (4). This is why the weighting
coefficients wα, α = 1, · · · , 8, are calculated from the average of
bn over all n, i.e.,

wα =

∑Ng

n=1 bnα∑8
τ=1

∑Ng

n=1 bnτ

(10)

where

bnτ =
1

Ng − 1

Ng−1∑
l=1

qn(τ,l) (11)

The denominator in (10) is intended to normalize the weighting coef-
ficients, so that they sum up to 1. Using (10) and (11), the weighting
coefficients are

wα =

∑Ng

n=1

∑Ng−1

l=1 qn(α,l)∑8
τ=1

∑Ng

n=1

∑Ng−1

l=1 qn(τ,l)

(12)

As seen, the final weighting coefficients can be calculated di-
rectly using the matrix Qn, n = 1, · · · , Ng , which include the
average distance of a gallery subject to the rest of the subjects in the
gallery. The resulting weighting coefficients are such that compo-
nents that exhibit greater average distances (and thus carry more dis-
criminant power) contribute more to the total distance. It should be

noted that only one cycle for each subject is available in USF’s data-
base of manual silhouettes. This prohibits the use of other optimiza-
tions, e.g., based on LDA, that could potentially further improve the
results by considering multiple instances of the same person. In the
experimental results section we will see that our approach achieves
superior results than the method presented in [7].

5. EXPERIMENTAL RESULTS

For the experimental evaluation of our method, we used the man-
ual silhouettes1 provided by the University of South Florida (USF).
This database contains human gait sequences captured under differ-
ent conditions, such as camera viewing angle, shoe type, walking
surface, and walking with/without carrying a briefcase. The gallery
(reference) set of gait sequences was used as the system database
and the probe (test) sets B, D, H, K were considered to contain se-
quences of unknown subjects who are to be recognized by compari-
son of their gait sequences to the sequences in the gallery set.

For the performance evaluation, we report Cumulative Match
Scores (as in [10]) at rank 1 and rank 5. Rank 1 results report the
percentage of the subjects in a probe set that were identified exactly.
Rank 5 results report the percentage of probe subjects whose true
match in the gallery set was in the top five matches. Intuitively,
we studied the relative importance of the human body components,
in the gait recognition system outlined in sections 2 and 3 using one
body component at a time. Fig 2 reports the recognition performance
at rank 1, illustrated using vertical bars for the various body compo-
nents. Figures 2 (a)–(d) correspond to probe sets B–D, respectively.
It is interesting to see that each component exhibits unequal discrim-
ination power, which varies from one probe set to another. Specifi-
cally, for probe B, the best performance is achieved using the torso
and the right thigh. This behavior is roughly the same for probe D.
For probe H, the torso remains the most powerful, but gives similar
performance with the head and the left thigh. Surprisingly, the right
arm which is occluded by the body in most of the frames, has good
discrimination power. This is due to the fact that the pattern of its
appearance, rather than its shape, is very useful for discriminating
between individuals.

The average performance for all set is reported in Fig. 2(e). In
general, the right thigh and right arm appear to be the most discrimi-
native body components followed by the torso. This is an important
conclusion which contradicts previous evidence, acquired using tests
on automatically-extracted silhouettes, that the lower body carries
almost all discrimination power [8]. It is now becoming clear that
correlated noisy pixels in the lower part of automatically-extracted
silhouettes led to the wrong conclusions about the discrimination
power of the lower body in comparison to the upper body.

The results obtained using independent body components can
be dramatically improved using a combination of their correspond-
ing distances given by equation (2). As mentioned in the previous
section, the final distance between two silhouettes was considered to
be equal to the minimum, maximum, and the median of the distances
corresponding to individual body components. We also considered
the weighted distance given by equation (4). As seen in Table 2, the
first three approaches in general do not yield good results, although
the combination based on the median operator occasionally gives
decent performance.

The best performing of our methods is based on the distance
metric given by equation (4). The results of this approach, which

1We used version 6 of the silhouettes.
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Fig. 2. Recognition percentage at Rank 1 for Probe sets B, D, H, K with respect to each body component and the average of all four Probe
sets.

Probe Rank 1(%) Rank 5(%)

set min max med W T d min max med W T d

B 12 29 29 49 39 46 61 78

D 10 20 24 26 29 37 44 53

H 3 20 14 16 14 43 36 46

K 6 6 12 15 15 30 24 39

Table 2. The results using several combinations of body component
distance.

will be termed Component-Based Gait Recognition (CBGR), are re-
ported in Table 3. The results are reported in comparison to the
USF method [7], which relied on the entire body without consider-
ing individual body components. It can be clearly seen that there is
considerable improvement on all probe sets at Rank 1 and Rank 5.

As mentioned previously, the performance of a gait recognition
system based on high-quality, manually-extracted, and manually-
labelled silhouettes seems to be inferior to that of a system based
on automatically extracted silhouettes. This conclusion, which con-
tradicts intuition, is due to correlated noise pixels which “boost” the
performance of the automatic system and render the associated re-
sults inconclusive and possibly unreliable. However, as shown in the
present paper, there is room for improvement of methods based on
manual silhouettes. We believe that the study of systems based on
manual silhouettes can provide more meaningful insights about the
discrimination power of gait and the parameters that affect recogni-
tion performance.

Probe Rank 1(%) Rank 5(%)
set CBGR USF CBGR USF

B 49 46 78 66

D 26 23 53 39

H 16 9 46 36

K 15 12 39 39

Table 3. Recognition percentage using the manual silhouettes with
combined distance ratios of all body components in comparison to
the USF method.

6. CONCLUSION

We presented a new approach for gait recognition using manually ex-
tracted and labelled silhouettes. The human body components were
studied separately and were shown to carry different discrimination
power. Several approaches were presented for the combination of

the results of the different body components into a common distance
metric for the evaluation of similarity between gait sequences. By
combining the results from all body components, improved recogni-
tion performance was achieved.
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