
HIGH SPEED VISUAL SALIENCY COMPUTATION ON GPU

Bo Han, Bingfeng Zhou†

Institute of Computer Science and Technology
Peking University, Beijing, P.R.China

ABSTRACT

Visual saliency analysis provides a power tool for many ap-

plications. In this paper, we propose a practical and high per-

formance GPU-based visual saliency computational model.

Several novel ideas are introduced for saliency computations,

such as the feature extraction as signed difference values in

the Lab color space and the feature fusion based on the infor-

mation theory. For our implementation on the GPU, besides

the programmable shaders we fully exploit other computa-

tional resources on the GPU to accelerate the computations.

Our experimental results demonstrate the effectiveness of our

saliency maps and indicate an order of magnitude speedup

over the CPU-based implementation.

Index Terms— Attention model, Saliency map, GPU

1. INTRODUCTION

Visual attention (VA) is an efficient mechanism which filters

out redundant parts and selects only important visual informa-

tion for further identification and understanding. It greatly re-

duces the quantity of input data and gives our ability for rapid

analysis and reaction to the complex environment. No doubt,

such a mechanism is much superior to any available machine

based methods. Therefore, some computational models have

been proposed to mimic the biological behavior and the neu-

ronal architecture. The most famous one has been proposed

by Itti and Koch [1]. His work is based on the concept of

saliency maps. Due to the effectiveness of attention models,

they have found their wide range of applications including

image/video representation and compression, information re-

trieval [2], realistic rendering [3], object detection and robotic

control [4], video adaptation on small-display devices [5].

However, most of these applications adopt much simpli-

fied versions of the biologically plausible model, due to the

fact that high computational complexity for imitating biolog-

ical functions requires massively parallel implementations to

obtain fast responses. Although these simplified methods can

efficiently solve problems in their corresponding fields, they

are lack of generality and usually not suitable for sophisticate

tasks, such as robotic control and target search.

∗Thanks to the NSFC for funding (Grant No.60573149).
†cczbf@pku.edu.cn

Fortunately, such a massively parallel computational model

fits well with today’s graphics processor units (GPU). GPUs

are built on highly parallel architectures and are evolving rapidly

in recent years. Its huge bandwidth, amazing computational

power and increasing programmability have attracted lots of

researchers to solve general-purposed computations on GPUs,

known as GPGPU [6]. Based on the facts, we are inspired to

utilize the GPU to implement our saliency model.

The main contributions of this paper are described as fol-

lowings. First of all, we propose a high performance GPU-

based visual saliency model. Our work demonstrates the ef-

ficiency of utilizing GPUs for such a computation intensive

task, which is due to their similar parallel processing mod-

els. We expect our work can find its applications for time-

consuming multimedia analysis, robotic control,etc. Besides,

some novel ideas are introduced in our saliency model, such

as the feature extraction as signed difference values in the Lab
color space and the feature fusion based on the information

theory.

2. ATTENTION MODEL AND GPU

In this section we quickly review several basic concepts of

visual attention models and some GPGPU technologies.

Most recent visual saliency computational models are built

around two important concepts: the Feature Integration The-

ory (FIT) and a neurally plausible architecture [7]. They sug-

gest that the bottom-up biological systems response to the vi-

sual stimulus with low-level feature extraction, center-surround

mechanisms and lateral inhibition effects. All these happen

in massively parallel. Following these basic principles, the

famous Itti’s model [1] mainly consists of three parts: early

visual features extraction, feature maps building, and feature

map fusion. This model utilizes the image pyramid to build

the feature maps: intensity contrast, R-G/B-Y color oppo-

nents and orientations. In addition, a global nonlinear amplifi-

cation function N(.) and a across-scale combination method

are proposed to combine these separate feature maps into a

single saliency map. We notice that such computations are

dominated by per-pixel operations, across-scale interpolations

and image convolutions, which are indeed the advantages of

today’s GPU.

The GPU’s computational power mainly stems from its

I - 3611-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

highly parallel architecture, which has dozens of fragment

and vertex processors working simultaneously and has deep

pipelined stages to yield high throughput. For general purpose

computation, the application’s computation kernels are writ-

ten as a series of vertex and fragment shaders, while the data

are stored as the geometries and textures. Drawing graphics

primitives activates the computation kernel to be executed for

each vertex or pixel. All are performed in a highly parallel

manner. In recent years, some GPGPU techniques and data

structures have been developed, such as reduction, sort and

linear algebra [6]. Moreover, for visual saliency computa-

tions additional resources on the GPU can be utilized. The

automatic Mipmap texture generation hardware can act as a

good candidate for building the image pyramid; the automatic

pixel interpolation of texture mapping makes the cross-scale

operations nearly computation free; and the blending units

can accumulate results as addition operations. Besides, the

occlusion query, which counts the number of pixels drawn by

a rendering pass, provides us an efficient tool to analyze the

statistical information of an image. The details of utilizing

these hardware features are presented in section 4.

3. OUR COMPUTATIONAL MODEL

Our visual saliency model is based on Itti’s [1] and Frin-

trop’s VOCUS [4]. In this section, we present an overview

of our model and emphasize several new ideas presented in

our work, that is, feature extraction in Lab color space and

map-fusion by means of the information quantity.

3.1. Feature Computations

The input image is first converted from RGB to the percep-

tually uniform CIE Lab color space. The space is spanned

by three axes: L represents luminance; a represent the color

component between red and green; and b for the component

between yellow and blue. We treat these three values of each

pixel as approximations for the intensity I, red-green color

opponent RG and blue-yellow opponent BY .

Then, the converted image is used to create a Gaussian

Pyramid Pl(σ), where l ∈ {I,RG,BY} and σ ∈ {0..8}.

Center-surround differences �, which detects locations that

locally stand out from their surroundings, is implemented as

the difference between fine and coarse scales. The operation

is obtained by interpolation to the finer scale and point-by-

point subtraction.

Ml(c, s) = Pl(c) � Pl(s) (1)

where c ∈ {2, 3, 4}; s = c + δ, δ ∈ {3, 4}. Noticed that we

use the signed difference value to account for both on-center

and off-center cells in receptive field, which respond to light

at the center excitably or inhibitably, respectively. This fact is

ignored in Itti’s[1] by taking the absolute value. VOCUS[4]

addressed this issue by adding additional maps. To analyze in

a multi-scale manner, six maps of each feature l are yielded.

Each map has separate positive and negative ranges to repre-

sent the on/off center responses.

Local orientation information is obtained by applying Ga-

bor filters to the levels of luminance pyramid PI . Since the

center-surround differences are already determined implic-

itly by the gabor filters [4], we directly choose three levels

c ∈ {2, 3, 4} from PI to be convolved with four orientations

filter G(θ); θ ∈ {0◦, 45◦, 90◦, 135◦}. Total twelve maps are

generated for analysis of orientations. In this way, all the early

visual features are obtained.

3.2. Saliencies Fusion

Since different multi-scale feature maps have different visual

modalities and dynamic ranges, it is always a hard problem to

combine them into a unique saliency map. Obviously all the

maps have un-equal influences. So we need determine their

corresponding importance. Four different combining strate-

gies are compared in [8]. N(.) [1] would fail when han-

dling multi equal strong maxima, while the complex iterative

scheme [8] as well as PCA method [2] suffer from the inten-

sive computations.

We try to solve this problem from the perspective of in-

formation theory. Ideally, each feature map should be able

to represent a sparse distribution of a few conspicuous loca-

tions over the visual field. These conspicuous spots are taken

as informative events. According to Shannon’s information

theory, the information conveyed by an event x is inversely

proportional to the likelihood of x being observed.

I(x) = − log(p(x)) (2)

To get the probability p(x), we count the pixels with their

values above a certain conspicuous threshold τ , for example

60% of the global maxium. The ratio with the number of

total pixels yields the approximation of p(M). In this way,

we obtain I(M) to reflect the importance of a corresponding

feature map, shown as Eq.3.

p(M) =
Cpass(M(i, j) > τ)

Call(M(i, j))
; (3)

I(M) = − log(p(M)) (4)

In our model, different fusion methods are given for dif-

ferent fusion actions. Considering their same modality, six

center-surrounding difference maps of each I, RG, BY are

summed up directly by across-scale addition ⊕, same for the

three multi-scale maps of each orientation.

Ml =
⊕

c,s

Ml(c, s); Oθ =
⊕

c

Mθ(c) (5)

where l ∈ {I,RG,BY}; θ ∈ {0◦, 45◦, 90◦, 135◦} and

c ∈ {2, 3, 4}. Then we obtain seven feature maps: one inten-

sity, two colors and four orientations. Actually, each of the

I - 362

intensity and color maps implicitly has two separate positive

and negative maps, which for the on-center and off-center ef-

fects. Then, they are combined into three conspicuity maps:

Ī for intensity, C̄ for color and Ō for orientation. Before

that, we give a weight function of Eq.6. The global maxi-

mum gives the amplitude while I(M) obtained by Eq.3 rep-

resent the uniqueness of a map. We use both of them to weight

each sub-map. The positive and negative parts are considered

separately. Afterwards, conspicuity maps are combined ac-

cording to Eq.7–9, where φ ∈ {+,−}, K ∈ {RG,BY} and

θ ∈ {0◦, 45◦, 90◦, 135◦}.They are further normalized to [0,1]

to eliminate modality differences.

w(M) = I(M) max
v(i,j)∈M

| v(i, j) | (6)

Ī =
∑

φ
w(MIφ) | MIφ | (7)

C̄ =
∑

K

∑
φ
w(MKφ) | MKφ | (8)

Ō =
∑

θ
w(Oθ) ×Mθ (9)

Finally, We weight each conspicuity map according to

Eq.6 and summed up them to the global saliency map S.

S = I(Ī)Ī + I(C̄)C̄ + I(Ō)Ō (10)

To some extend, our fusion method acts as global non-

linear amplifications like N(.)[1] but it is relatively robust

and avoids the time-consuming search for every local max-

ima. Especially, Eq.3 can be efficiently implemented by the

occlusion query of current GPUs. Furthermore, by splitting

the feature map into blocks and analyzing the local statistics,

we expect to obtain more accuracy and spatial-context adap-

tive results, which is left for our further work.

4. REALTIME IMPLEMENTATION ON GPU

In this section we describe in details how to compute the

saliency map with the GPU. After giving the data representa-

tion and the processing steps, we present the implementation

details for several important operators mentioned in section

3. Our implementation is built on OpenGL and the Cg shader

language.

The multi-channel RGBA texture format and the SIMD

vector operations of the GPU are fully utilized to accelerate

intensive computations. The intensity and two color oppo-

nents are stored in the separate channels of a single RGB tex-

ture, while four orientation maps reside in one RGBA texture.

In this way, all the channels in one texture can be processed

in parallel and benefit from the GPU’s vector operations.

The original image is first uploaded to the GPU as a 2D

RGB texture. To generate the final saliency map, it will pass

through the following stages.

The input image is first resized with its aspect ratio un-

changed by drawing a quad in a specific size, typical 640x480,

which aims to reduce computations for large images and build

a complete image pyramid. Then, a rendering pass is ac-

tivated for color space conversion from RGB to Lab. The

result is stored in a multi-channel texture with the 16bit float-

ing point format to ensure the precision. Then, the automatic

mipmap texture generation is further utilized to build the im-

age pyramid, which is based on bilinear filtering. The Gaus-

sian and other filters can also be utilized to build the pyramid

by the ping-pong technique (alternately rendering to and read-

ing from a pair of textures) [9]. Here we choose the mipmap

method due to its simplicity.

Afterwards, we apply a simple fragment shader to com-

pute center-surrounding differences (Eq.1). After assigning

texture coordinates for each vertex of the quad, the shader

samples texels from the fine and coarse levels and outputs

their differences. Benefitting from the automatic texture in-

terpolation, we are no need to care about the scale differ-

ence. The level of the pyramid can be specified by setting

the derivative parameters for Cg texture functions. For the

following stage of across-scale additions (Eq.5), we enable

the blending function to accumulate all the differences.

The Gabor filters are always computation intensive. The

filter kernel size directly impacts the performance. Fortu-

nately, four Gabor filter kernels can be precomputed and stored

as a RGBA texture. Filters with the size of 5x5 are adopted in

our implementation.

Finding the maximum and minimum values of each fea-

ture map (Eq.6) is a typical GPGPU operation, called as re-

duction. On GPUs, reductions can be performed by the ping-

pong techniques in O(logn) steps [6]. For a two-dimensional

reduction, the fragment program reads four elements from

four quadrants fo the input texture, and the output size is

halved in both dimensions at each step. In this work, the max-

ima and minima correspond to the positive and negative parts,

respectively.

The computation for Eq.3 is implemented by the occlu-

sion query. This hardware mechanism can count the number

of the pixels that finally pass through the rendering pipeline.

Since we have obtained the global maxima for each feature

maps, we can design shaders to only allow pixels with their

values above a threshold to pass through. By means of the

queried number of passed pixels, we can efficiently finish the

computation for I(M)(Eq.3). Finally, by sampling multi-

textures and setting weights as uniform parameters of the fu-

sion shaders, we combine all the maps together to yield the

desired saliency map (Eq.10).

5. EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate the potential and efficiency of our GPU-based

visual saliency model, we use several images and video se-

quences to evaluate its performance and further compare its

output saliency map with Itti’s VA model[1]. All the experi-

ments were run on a 2.8G Pentium 4 with an Nvidia Geforce

I - 363

6800GT.

We give a quantitative performance comparison between

our proposed GPU-based method and the C++ implementa-

tion of Itti’s model. Images with three different resolutions

were tested. We need to mention that the time costs for our

GPU-based implementation including the costs of uploading

the image to the GPU and downloading the saliency map af-

ter computations. Tab.1 gives the results in the frame rate per

second (fps), which indicates an order of magnitude improve-

ment in computational speed. The results also show the data

transfer between the CPU and GPU can greatly impact the

performance.

Image Size 352x288 640x480 1280x720

Itti(CPU) 12.2 (fps) 2.5 (fps) 0.8 (fps)

Ours(GPU) 186.3 (fps) 122.5 (fps) 53.4 (fps)

Table 1. Performance for different size images

Fig. 1. Saliency maps. Left:original images; Middle:saliency

maps given by Itti’s model; Right: saliency maps generated

by our proposed implementation.

Besides the performance, we present some examples of

our saliency maps for subjective evaluations in Fig.1. The first

image clearly demonstrates the effectiveness of handling the

on-center/off-center responses separately. Itti’s model can’t

determine the difference of white and block circles on a gray

background. Other maps also prove the efficiency of our model.

6. CONCLUSION

In this paper, we propose a practical GPU-based visual saliency

computational model.We extract early visual features in the

Lab color space and keep the signed difference value to han-

dle the separate on-center/off-center responses. Besides, a

new feature map fusion method is presented based on the in-

formation theory. It can be implemented efficiently by occlu-

sion query of the GPU. In our GPU-based implementation,

besides the computation power of the programmable shaders,

other resources on the GPU, such as interpolation, blending,

mipmap generation, are fully utilized to accelerate our saliency

model. Experimental results indicate an order of magnitude

speedup over its CPU competitor. The output saliency maps

further prove its effectiveness of catching salient regions in a

image. We expect our work can help time-consuming appli-

cations based on saliency models. We also plan to add motion

as an important saliency in our future work.

7. REFERENCES

[1] L. Itti, C. Koch, and E. Niebur, “A model of saliency-

based visual attention for rapid scene analysis,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 20, no. 11, pp. 1254–1259, Nov 1998.

[2] K. Rapantzikos and Y. Avrithis, “An enhanced spatiotem-

poral visual attention model for sports video analysis,” in

International Workshop on content-based Multimedia in-
dexing (CBMI), June 2005.

[3] Hector Yee, Sumanita Pattanaik, and Donald P. Green-

berg, “Spatiotemporal sensitivity and visual attention

for efficient rendering of dynamic environments,” ACM
Trans. Graph., vol. 20, no. 1, pp. 39–65, January 2001.

[4] Simone Frintrop, VOCUS: A Visual Attention System for
Object Detection and Goal-Directed Search, vol. 3899 of

Lecture Notes in Computer Science, Springer, 2006.

[5] Cheng Wen-Huang, Wang Chia-Wei, and Wu Ja-jing,

“Video adaptation for small display based on content re-

composition,” IEEE Transaction on Circuits and Systems
for Video Technology, 2007.

[6] John D. Owens, David Luebke, Naga Govindaraju, Mark

Harris, Jens Krger, Aaron E. Lefohn, and Timothy J. Pur-

cell, “A survey of general-purpose computation on graph-

ics hardware,” Computer Graphics Forum, vol. 26, 2007.

[7] L. Itti and C. Koch, “Computational modeling of visual

attention,” Nature Reviews Neuroscience, vol. 2, no. 3,

pp. 194–203, Mar 2001.

[8] Christof Koch and Laurent Itti, “Feature combination

strategies for saliency-based visual attention systems,”

Journal of electronic Imaging, 2001.

[9] M. Strengert, M. Kraus, and T. Ertl, “Pyramid Methods in

GPU-Based Image Processing,” in Workshop on Vision,
Modelling, and Visualization VMV ’06, 2006, pp. 169–

176.

I - 364

