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ABSTRACT

A novel method is introduced to segment and recognize time-

varying human gestures from continuous video streams. Mo-

tion is represented by a 3D spatio-temporal surface based upon

the evolution of a contour over time. The warping paths be-

tween the input signal and a set of Gesture Models are ob-

tained using Continuous Dynamic Programming and the bound-

ary of a gesture is located by analyzing all possible gesture

candidates during a specific period of time. Correlation and

Mutual Information are employed to select the best candidate

when more than one gesture is recognized at the same time

period. The system has been implemented and tested on con-

tinuous gesture sequences containing 8 different gestures per-

formed by 4 subjects. The results demonstrate that the pro-

posed method is very effective, achieving a recognition rate

of 95.9%.

Index Terms— Continuous Gesture Recognition, Dynamic

Time Warping, Continuous Dynamic Programming, Motion

Signature, Gesture Model.

1. INTRODUCTION

Automatic gesture recognition from continuous video streams

has a variety of potential applications varying from smart sur-

veillance, human-machine interaction to biometrics [1, 2]. In

most naturally occurring scenarios, gestures are linked to-

gether in a continuous varying stream, without any obvious

pause or break between individual gestures. The recognition

of such gestures is therefore closely related to the segmenta-

tion of such a stream into individual gestures, i.e. determining

the start and end times of individual gestures, and segmenta-

tion and recognition in this way become aspects of the same

problem.

The task of gesture segmentation is to extract meaningful

patterns from a stream of input signals. Due to the large inter-

and intra- human gesture variations appearing both in the spa-

tial and temporal domains, segmenting and recognizing con-

tinuous gestures is considered to be challenging. Dynamic

Time Warping (DTW) and Hidden Markov Models (HMM)

have been widely used in continuous gesture recognition, fol-

lowing the path of continuous speech recognition [3, 4, 5, 6].

Since DTW can’t locate gesture boundary in a continuous

stream, Darrell et al. [3] performed an exhaustive search at

each time instance using DTW. Liang et al. [4] used the time-

varying parameter to detect the endpoints in continuous Tai-

wan Sign Language, and HMM is employed for recognition.

Lee et al. [5] constructed a threshold model based on HMM

to segment gestures in sequences. Starner et al. [6] employed

HMM to recognize structured American Sign Language sen-

tences without explicit segmentation at the word level. How-

ever, the use of HMM recently has been criticized for its large

training set requirement and complicated classification mod-

els [7, 8].

In this paper, we propose a novel approach to segment and

recognize gestures in continuous streams based on a frame-

work combining Continuous Dynamic Programming (CDP) [9]

and two matching schemes, i.e. Correlation and Mutual In-

formation (MI) [10, 11]. Both CDP and DTW are based

upon dynamic programming. In CDP, the main idea is to

allow each time instance to be a start time during the warp-

ing, which makes it attractive for dealing with the continu-

ous stream segmentation problem. CDP has been previously

employed for gesture recognition [12, 13]. In conventional

CDP-based approaches, however, the large variation across

gestures makes it difficult to find appropriate thresholds for

each class on which decisions could be made [12, 13]. In

contrast, our approach only employs a single global thresh-

old to rule out obvious incorrect warping paths and the real

gesture is derived by analyzing all candidates paths obtained.

Correlation and MI, with a proven effectiveness to deal with

multi-scale gestures [10, 11], are further employed to choose

the best gesture candidate whenever more than one gesture is

found in one specific period of time.

2. MOTION SIGNATURE AND GESTURE MODELS

We chose to represent motion by a 3D spatio-temporal sur-

face, a Motion Signature, based on the contour evolution over

time. The subject is first segmented from the background

based on statistics of the color distribution [14], and the bor-

der following method proposed by Suzuki et al. [15] is then

used to extract the contour of the subject. To parameterize

the contour, we adopt the 1D distance-to-centroid shape de-
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Fig. 1. Motion Signature: a contour-based motion represen-

tation.

scriptor which clockwise unwraps the contour with respect

to the centroid, similar to [16, 17]. A Motion Signature is

then obtained by stacking consecutive 1D distance signals

along the time axis. Fig. 1 b) and c) show the contour traver-

sal process and the normalized 1D signal, respectively. The

3D surface of a Motion Signature can be visualized as a 2D

image (Fig. 1 d)), where each horizontal line indicates one

distance signal and the intensity corresponds to the distance

value. To account for variations of the motion, a Gesture

Model consisting of a set of mean images and variance im-
ages is then constructed using Motion Signatures at multiple

time scales [10, 11].

Segmenting individual gestures from a continuous stream

is difficult since we assume that gestures can be carried at

any time in an arbitrary order, and that the duration of each

gesture is also unknown due to speed variations. In our previ-

ous work [11], we have applied DTW to Compound Gesture

Models (CGMs), which are composed of the concatenation

of two Gesture Models, to approximately estimate the end-

points of a gesture in a stream. The gesture is then recog-

nized by finding the best match using Correlation or Mutual

Information over the estimated endpoints. A limitation of that

algorithm is that, since the number of the CGMs is K2 for a

database of K gestures, the computational cost to warp the in-

put to all the CGMs is O(K2MN), given that the time com-

plexity of DTW is O(MN) (M and N, the lengths of the two

warped signals). It can be prohibited for large database in

realtime applications. In the following, we’ll show that the

computational cost can be reduced to O(KMN) when CDP

is employed to segment the gestures.

Fig. 2. Local and global constraints.

3. GESTURE SEGMENTATION AND RECOGNITION

In this section, we’ll first compare DTW to CDP. Then a new

gesture segmentation and recognition method based on CDP

and two other matching algorithms, i.e. Correlation and Mu-

tual Information, will be presented.

3.1. CDP vs. DTW

DTW makes use of dynamic programming to align two simi-

lar signals, and CDP can be viewed as an extension to DTW.

A global optimum path is found by recursively accumulating

the locally optimal paths. Given a test pattern Zt and refer-

ence pattern Zt′ , the best time warp will minimize the accu-

mulated distance along the path through the grid from (0, 0)
to (t, t′). When the local range of the path in the vicinity of

the point (i, i′) is restricted to its immediate three neighbors,

i.e., local constraint type I shown in Fig. 2 a), DTW can be

formulated as:

Ri,i′ = ri,i′ + min(Ri,i′−1 + Ri−1,i′ + Ri−1,i′−1) (1)

where
R1,1 = r1,1

Ri,1 = ri,1 + Ri−1,1

R1,i′ = r1,i′ + R1,i′−1

In Eq.(1), Ri,i′ is the partial sum cost, and ri,i′ measures the

distance of gesture signals at two temporal instances. The test

pattern is generally classified as the reference pattern where

the accumulated distance is minimum.

The limitation that the endpoints of the two signals have

to be aligned prevents DTW from being applied directly in

continuous gesture recognition since we don’t know a priori
the location of the endpoints of each gesture in the input se-

quence. In early work, some techniques have been proposed

to overcome this problem for the application of Connected

Speech Recognition (CSR), i.e. early-decision, level build-

ing, etc., and a thorough review of these techniques can be

found in [18].

CDP is a variation of DTW in the sense that the global

optimum path of CDP is found the same way as DTW, i.e.

recursively accumulating the locally optimal paths. If we use

the same local constraint as in Eq.(1), then by revising the
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Fig. 3. A continuous gesture sequence containing 8 ges-

tures. From left to right: 3 (“wave two hands”), 2 (“wave

left hand”), 1 (“wave right hand”),7 (“left down right up”), 8

(“left up right down”), 6 (“raise two hands”), 7, 8.

initialization condition Ri,1 = ri,1 + Ri−1,1 to Ri,1 = ri,1,

we allow each frame of the input sequence to be a start time

candidate. The accumulated distance of Ri,t′ represents the

warping distance between the reference model Z1:t′ and the

partial input Zi0:i, where i0 can be obtained by tracing back

the warping path. When the value of Ri,t′ reaches a mini-

mum at time i, the endpoint of a potential gesture has been

segmented.

CDP based on Eq.(1) doesn’t have any constraint on its

warping path. Ratanamahatana et al. [19] point out that wider

warping windows do not always give higher recognition ac-

curacy, as generally believed. In fact, the accuracy usually

peaks at certain warping window sizes, and then drops as the

window size increases. In our experiment we also found that

the warping window size does affect recognition rate. How-

ever, because the speed variance of gestures in our database is

relatively large, the choice of the best global warping window

size is difficult. We therefore adopt a moderate warping win-

dow to give a certain constraint. If the local constraint type

II (as shown in Fig. 2 b) ) is applied, a global parallelogram

constraint is enforced automatically, which is shown in the

shadowed area in Fig. 2 c).

3.2. Algorithm implementation

Based on CDP, a gesture can be segmented as long as the ac-

cumulated distance value for one pattern falls below a prede-

fined threshold during the warping process. Usually, a thresh-

old for each pattern has to be defined in advance based on

training data. However, due to the large spatial and temporal

variations among gestures, it’s very difficult to find appro-

priate thresholds based on limited training data. Moreover,

since threshold values vary among different gesture classes,

a decision will be hard to make when more than one gesture

have accumulated distance values below their own thresholds

at roughly the same time. Therefore, applying CDP directly

for continuous gesture recognition usually won’t give satis-

factory results.

Total # Subs Dels Ins Rec. Rate
640 5 8 13 95.9%

Table 1. Results for continuous gesture recognition.

In our approach, the endpoint detection will not depend

on thresholds learned from each individual class. We use only

one uniform threshold Γ to rule out those warping paths with

sufficiently large accumulated distances. Correct gestures are

determined first by analyzing the start and end times of all

possible gesture candidates. When there is only one gesture

occurring within a specific time, a decision that a gesture is

segmented can be made easily. However when multiple ges-

tures are found within the same time period, then a voting

scheme incorporating correlation and MI, is used to select

the most probable gesture class. The details are described

as follows: The input sequence with multiple gestures is first

warped to all Gesture Models at their maximum scales based

on CDP, respectively. Each warping produces a list of ac-

cumulated distance values αk, where k is the gesture class

number and the element of αk is Ri,t′ as defined in Eq.(1).

A small fixed size window is then slid through each list αk.

Within the window, The smallest distance value is found and

kept only if it is smaller than the threshold Γ. The time when

the smallest value is observed, the gesture class, the start time

(can be traced back through the warping path), together with

the distance value are put into the candidate list β. In list β,

those candidates sharing the same gesture class and start time,

but with larger distance values will be removed, and many

false local minima are ruled out.

For two adjacent candidates Ca and Cb, if the start time of

Cb is later than the end time of its preceding gesture Ca, and

their start times are not the same, then Ca is believed to be the

true gesture. Alternately, if the start time of Cb is earlier than

the end time of Ca, which indicates that the two candidates

overlap, we cannot decide the correct gesture since both of

the warping distances reach their local minima. Instead, we

make use of a voting scheme to make the decision. That is,

both Ca and Cb are matched to the Gesture Models at their

corresponding scales using both Correlation and MI similar

to [10, 11]. The correct gesture belongs to the one getting at

least two votes among the three.

Since the input signal is only warped to the K individ-

ual Gesture Models, the time complexity of this algorithm

is O(KMN). Fig. 3 shows a continuous gesture sequence

of 400 frames automatically segmented by the algorithm de-

scribed above. The gestures are performed in a random order

with speed variations, e.g. gesture No.7 (“left down right up”)

was slower when it was repeated the second time. Our ap-

proach successfully segmented and recognized all 8 gestures.
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4. EXPERIMENTS

To characterize the performance of the method, we executed

a set of experiments on a number of subjects. All data were

captured with a Point Grey Firefly camera using an image res-

olution of 320 × 240, at a frame rate of 15 fps. There were a

total of 8 Gesture Models in the database, each of which was

learned using 30 instances performed by three subjects. To

evaluate our algorithm for continuous gesture recognition, we

collected 80 video clips performed by three subjects, with two

of them the same as the training subjects. For each video clip,

the subject was asked to arbitrarily perform any 8 gestures

continuously in random order, without any obvious pauses

between gestures. In total, there were 640 gestures for testing.

We manually segmented and annotated all 80 video clips

as the ground truth. To evaluate the results, we used the crite-

rion used in continuous speech recognition where the recog-

nition rate is based on three error types: Substitution, where

an incorrect gesture was substituted for the correct one; Dele-
tion, where a correct gesture was omitted in the recognized

sequence; and Insertion, an extra gesture was added in the

recognized sequence. The recognition rate was then calcu-

lated as [6]:

Rec. Rate = 100% × (1 − Subs + Dels + Ins

No. of correct gestures
) (2)

Table 1 shows that our algorithm reaches an average recog-

nition rate of 95.9% on the test data. The result demonstrates

that the proposed approach was very effective at recognizing

gestures in continuous sequences. Currently, the algorithm

was not optimized for good time performance. But we ex-

pect that with further optimization, the algorithm could be

executed in real-time.

5. CONCLUSION

We have presented a novel method for the segmentation and

recognition of time-varying continuous human gestures, and

experimental results have demonstrated the method to be ef-

fective. Using a framework that combines Continuous Dy-

namic Programming and two other matching methods, i.e.

Correlation, and Mutual Information, the temporal endpoints

of a gesture were segmented and a gesture was recognized.

The proposed method is both computationally efficient and

robust: in experiments containing 80 continuous gesture se-

quences, the resulting average recognition rate was 95.9%.

In future work, we plan to apply this approach to other

type of gestures, e.g. sign language. We are also implement-

ing a real-time gesture recognition system based on the de-

scribed method.
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