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ABSTRACT

The problem of human activity recognition via visual stimuli

can be approached using manifold learning, since the silhou-

ette (binary) images of a person undergoing a smooth mo-

tion can be represented as a manifold in the image space.

While manifold learning methods allow the characterization

of the activity manifolds, performing activity recognition re-

quires distinguishing between manifolds. This invariably in-

volves the extrapolation of learned activity manifolds to new

silhouettes— a task that is not fully addressed in the liter-

ature. This paper investigates and compares methods for the

extrapolation of learned manifolds within the context of activ-

ity recognition. Also, the problem of obtaining dense samples

for learning human silhouette manifolds is addressed.

Index Terms— Human activity recognition, manifold

learning, manifold extrapolation methods, dense sampling.

1. INTRODUCTION

Visual analysis of human motions aims to understand human

activities or to recognize people. This strong interest is driven

by a wide spectrum of promising applications such as virtual

reality, video surveillance and perceptual interface. This pa-

per concerns recognizing the types of human activities from

image sequences. The fundamental problem of such a task is

how to effectively account for spatial (e.g. body shapes, cloth-

ing) and temporal (e.g. walking speed and style) variations in

the images within similar activity classes.

This paper adopts the paradigm of analyzing human mo-

tion sequences using silhouettes. Since the silhouettes (bi-

nary images) of a person undergoing a smooth motion can

be represented as a manifold in the image space, the problem

of human activity recognition can be solved using manifold

learning methods. A few researchers have attempted to an-

alyze human motions using manifold learning e.g. for pose

estimation [1], and have obtained promising results. Nonethe-

less, to our best knowledge, there seems to have been no re-

ported works on using manifold learning for activity recogni-
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tion. While manifold learning allows the modeling of “activ-

ity manifolds”, identifying the activity in a sequence requires

comparing learned manifolds. This involves the extrapolation

of learned manifolds to novel silhouettes (as will be described

in §3.2)— a task not fully addressed in the literature.

One of our contributions lies in comparing several meth-

ods for manifold extrapolation. As mentioned before, although

previous works have proven the feasibility of manifold learn-

ing for general human motion analysis, it is unclear which ex-

trapolation technique performs the best for silhouettes for the

objective of human activity recognition. Given an extrapola-

tion technique, we also show how to compare activity mani-

folds for the purpose of classification. In addition, since many

human motion databases contain only short sequences of an

activity, this paper introduces a method to interpolate silhou-

ettes of a human body undergoing a particular motion to pro-

duce longer and smoother sequences. This is to examine the

effect of different sampling densities on performance.

2. BACKGROUND AND MOTIVATION

Traditional activity recognition methods are based on track-

ing, obtaining intensity or gradient based features, finding lo-

cal descriptors on interest points in images etc. For a survey,

refer to [2]. Human motion can also be analyzed as temporal

variations of human silhouettes. It can be more advantageous

to use silhouettes since silhouette extraction is relatively easy

and very feasible with current techniques. In contrast, model

or feature tracking is complex due to the large variability in

the shape and articulation of the human body and imaging

conditions. The same difficulties affect methods that use im-

age measurements (e.g. optical flow, spatiotemporal gradients

or other intensity-based features). See [2] for more details.

A recent trend is to analyze human motion using mani-

fold learning methods, since images (i.e. not only silhouettes)

of a human body undergoing a specific activity (e.g. walking,

bending) occupy a smooth (mostly likely non-linear) mani-

fold in the image space. Usually the objective is for tracking.

For the task of activity recognition, however, one needs to

compare activity manifolds, and this will invariably involve

manifold extrapolation. A manifold extrapolation technique

was proposed in [1] to find the positions of novel silhouettes
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on a previously learned manifold, but their aim was to in-

fer 3D body poses using silhouette images, and it is unclear

how their method would perform for activity recognition. For

our purpose here, we are interested not only in learning and

extrapolating manifolds, but also in comparing learned mani-

folds to distinguish between human activities.

The paper is organized as follow: §3 discusses manifold

learning, extrapolation and comparison in the context of hu-

man motion analysis. §4 describes how silhouettes can be

interpolated. §5 presents experimental results to support the

proposed methods, and a conclusion is drawn in §6.

3. LEARNING ACTIVITY MANIFOLDS

Let the set of input vectors sampled from an underlying man-

ifold of the input space R
m be given by X = {x1, · · · ,xn}.

Manifold learning computes the corresponding outputs (the

embedding) E = {e1, · · · , en} ∈ R
r in such way that the

manifold structure innately present in X is preserved. This

entails that nearby inputs should be mapped to nearby out-

puts, while faraway inputs should be mapped to faraway out-

puts [3]. Typically, r � m, and r reflects the intrinsic di-

mensionality of the underlying manifold. Popular methods

include LLE, ISOMAP and Laplacian Eigenmaps [3].

Fig. 1(a) shows an example of applying LLE on a bend-

ing motion sequence (down then up) using the silhouette im-

ages (64 × 49 pixels). LLE uncovered a 2D embedding with

the points forming a smooth 1D curve, indicating that the

manifold structure is preserved in the embedding space.

3.1. Manifold extrapolation methods

Given a learned manifold (i.e. the embedding coordinates of

the training points such as in Fig. 1(a)), we wish to find the

position of a new point (not necessarily from the same man-

ifold) in the embedding space. Several promising extrapola-

tion techniques are surveyed here and tested for human activ-

ity recognition using silhouettes in §5.

3.1.1. Neural networks

A solution is to train multi-layer feed-forward neural networks

to produce a mapping from the input space R
m to the embed-

ding space R
r [4]. Formally, the aim is to produce a function

e = fNN (x;W) , (1)

where x ∈ R
m, e ∈ R

r and W represents a set of weights

and biases which defines the architecture and characteristics

of the neural network. Given input points X and embedding

coordinates E from manifold learning, training a neural net-

work involves performing the following task:

W∗ = arg min
W

n∑

i=1

‖ei − fNN (xi;W)‖2 . (2)

The error-backpropagation algorithm can be used to update

the weights. Also, instead of minimizing the error in (2) only,

one can include the criterion of minimizing the error of a val-

idation set to improve the generalization capability of fNN .

After W∗ is obtained, fNN can be freely applied to any new

input point to find its embedding coordinates.

3.1.2. Generalized Radial Basis Functions (GRBF)

Another solution is to construct GRBF interpolation func-

tions [1]. This involves estimating an interpolation function

from R
r to every dimension (pixel) in R

m (a total of m func-

tions are created). All the functions can be combined to form

an embedding space R
r to input space R

m function

x = fGRBF ( ψ(e) ; B ) = Bψ(e) , (3)

where ψ(e) involves evaluating the chosen basic functions on

e and each cluster center, while matrix B defines each indi-

vidual interpolant. A manifold extrapolation function can be

derived by inverting fGRBF , and it is shown in [1] how this

can be achieved using the pseudo-inverse of matrix B, i.e.

given a novel point x∗, the following is evaluated

ψ(e∗) = f−1
GRBF (x∗;B) = B†x∗ (4)

and the embedding coordinate e∗ of x∗ can be recovered from

ψ(e∗) in closed form. As argued in [1], creating an extrapola-

tion function by inverting fGRBF is more practical since con-

structing GRBF interpolants directly from R
m to R

r would

require a prohibitively large amount of samples.

3.1.3. The Nyström estimator

Spectral embedding methods (e.g. LLE, ISOMAP, Lapla-

cian Eigenmap) eventually arrive at a symmetric matrix K ∈
R

n×n of which the eigenvectors provide the desired embed-

ding coordinates [3]. How K is obtained depends on the

specific algorithms. From this perspective, extrapolating a

learned manifold for a new point can be achieved by extend-

ing the eigenvectors of K. This can be achieved with the

Nyström formula in conjunction with a data dependent ker-

nel [5]. A data dependent kernel kn(·, ·) is defined as

Kij = kn(xi,xj) ∀ xi,xj ∈ X , (5)

and evaluating kn(xi,xj) depends not only on xi and xj but

also on the training data X . In the limit of n → ∞, the

Nyström estimator for the eigenvectors approach the true un-

derlying eigenfunction [5]. To extrapolate a new point x, the

Nyström estimator with n samples for the k-th eigenvector is

fk,n(x) =
√

n

λk

n∑

i=1

νikkn(x,xi) , (6)
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(a) Learned manifold for bending motion from a

sequence with 65 silhouette images. Connecting

lines between successive points are drawn for better

visual presentation of the manifold structure.
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(b) Extrapolation of learned two-handed waving

manifold (red circles) to other testing sequences.

All activities were done by different individuals.

The same activities produced similar trajectories.
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(c) Extrapolation of learned walking manifold

(red circles) to other testing sequences. All activi-

ties were done by different individuals. The same

activities produced similar trajectories.

Fig. 1. Learning and extrapolating activity manifolds of human silhouettes.

where λk is the k-th eigenvalue of K and νik is the i-th el-

ement of the k-th eigenvector of K. The actual algebraic

form of kn(·, ·) depends on the specific spectral embedding

method, and it is shown in [5] how kn(·, ·) can be defined for

LLE, ISOMAP and Laplacian Eigenmap.

3.2. Comparing manifolds

The main assumption for activity recognition is that mani-

folds of silhouettes of the same activities lie closely in the im-

age space, while manifolds of differing activities are far apart,

provided the body shapes do not dramatically differ. Hence,

given a learned manifold of a particular activity, extrapolating

for a sequence containing the same activity should result in a

set of embedding coordinates which give rise to a trajectory

that is similar to the learned manifold. The opposite should

happen for a sequence with a different activity. Figs. 1(b)

and 1(c) support the validity of this assumption.

Based on the above assumption, manifold comparison

can be performed by computing distances between trajecto-

ries in the embedding space while respecting differences in

sequence length and temporal shifts. A variant of the Haus-

dorff metric, the “mean value of the minimums”, can be used:

Diff(MG,MP ) =
1
tG

tG∑

i=1

min
1≤j≤tP

‖MG(i) − MP (j)‖ ,

(7)

where MG and MP are respectively the gallery and probe se-

quences (the embedding coordinates), tG and tP are respec-

tively the length of MG and MP , while MG(i) indicates the

i-th point in the sequence of MG. To make Diff(·, ·) sym-

metric, the following can be evaluated:

D(MG,MP ) = Diff(MG,MP ) + Diff(MP ,MG) . (8)

D(MG,MP ) is small when MG and MP are similar (and vice

versa). It is 0 when MG and MP are exactly the same.

4. INTERPOLATING MOTION SILHOUETTES

Two motivations exist to upsample the training data in time.

First, almost all manifold learning methods require a dense

sampling of the underlying manifold. Secondly, having more

samples can be beneficial for estimating or training the extrap-

olation function. Many publicly available video databases for

activity recognition contain only short sequences.

The task hence is to interpolate intermediate silhouettes

between two observed ones (in the spatial domain). However,

silhouettes change over time in an elastic way (the distance

along the boundary from the top of the head to the left foot

might be half the boundary length in one frame, but only 40%

of the length in the next one). The problem is separated into

two parts: first, represent the two observed silhouettes by se-

quences of equally spaced landmark points on their bound-

aries, and minimize the non-linear elastic matching distance
between the two sequences [6], in order to establish correct

pointwise correspondence between them. Second, find land-

marks for the intermediate frames by linear interpolation be-

tween corresponding landmark points, and floodfill the result-

ing silhouette boundaries to obtain intermediate frames.

5. EXPERIMENTAL RESULTS

A recent database reported in [7] is used for our experiments.

This database is appreciably larger than other publicly avail-

able databases, and it consists of 90 low-resolution videos (all

less than 100 frames) from 9 different subjects, each perform-

ing 10 vastly different activities (e.g. bending, jumping, run-

ning, waving). All sequences were employed in our exper-

iments, and we made use of the readily available silhouette

masks. See Fig. 2(a). The leave-one (subject)-out procedure

is carried out, i.e. the sequences of one subject (all activities)

are retained for testing, while manifold learning (LLE) is per-

formed on the other 80 sequences. On each learned mani-
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(a) Several examples of the database. Note the

variability in body shapes and silhouette quality.
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(b) Classification rates using LLE manifold learning

on silhouette images (with silhouette upsampling).
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(c) Classification rates of varying PCA manifold di-

mensions (silhouette upsampling factor = 1).

Fig. 2. Experimental results.

fold, extrapolation (with the techniques described in §3.1) is

carried out for each testing sequence and the trajectories are

compared using (8). The testing sequence is labeled with the

activity with which it has the smallest manifold distance. To

examine the effect of different sampling densities on the per-

formance, the silhouettes are upsampled at different factors.

Figs. 2(b) and 2(c) illustrate the results. It can be seen

that the Nyström estimator and inverse RBF extrapolation meth-

ods gave the best performance (avg. 93% and 92%). Neural

networks do not extrapolate satisfactorily hence producing in-

ferior classification rates. It should be noted that a prior tuning

of the parameters for inverse RBF and neural networks was

carried out. In the experiment in Fig. 2(b), PCA was also used

as a baseline method to learn a 2D linear subspace to char-

acterize each activity manifold (one subspace per sequence).

A testing sequence is projected onto each 2D subspace and

manifold comparisons are evaluated using (8). This produced

almost the same performance as neural networks. In addition,

it can be seen from Fig. 2(b) that activity classification rates

are not affected by the length of the training sequences, de-

spite a more denser sampling of the underlying manifold pro-

vided by silhouette interpolation. In Fig. 2(c), the dimension

of the PCA subspace for each training manifold was varied

and the classification rates were recorded. It can be seen that

the performance markedly decreases as more dimensions are

used. This is probably because the variance of the sequences

are confined in the first few dimensions, and increasing the

subspace dimensions involve only learning unwanted noise.

6. CONCLUSIONS

Based on the empirical results, we conclude that the Nyström

estimator is the best extrapolation technique (at least for hu-

man activity recognition using silhouettes). This is motivated

by its good performance and simplicity (no parameter tun-

ing is required!). In contrast, although inverse RBF performs

equally well, some effort is required for model selection and

parameter tuning such as number of cluster centers, types of

basic functions and their parameters. Neural networks suffer

from the same difficulties e.g. choosing the number of hid-

den layers, number of neurons and types of activation func-

tion. Finally, although it can provide a denser sampling of the

underlying manifold, we find that silhouette interpolation is

unnecessary for the particular database. Despite a small num-

ber of images per sequence (some as low as 36 frames!), LLE

seems to perform well for activity recognition.
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