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ABSTRACT 

In this paper we propose a content-based binary image 
authentication scheme. At first, we use Zernike moments 
magnitudes (ZMM) to generate the feature vector and 
demonstrate that this feature vector can represent the binary 
image and decide its authenticity effectively. Then the 
watermark is generated by quantizing ZMMs and embedded 
into the image. The authentication doesn’t need the original 
watermark. The decision depends on the distance between 
the extracted watermark and the feature vector of the test 
image and a metric measure. To decrease the influence of 
watermarking on the feature vector, we split the binary 
image into two parts by a random mask, one for generating 
feature vector and the other for embedding watermark. 
Zernike moments are usually computationally expensive, so 
we propose a fast algorithm. Extensive experiments show 
that our scheme can detect malicious attacks effectively.  

Index Terms—binary image authentication, Zernike 
moments, watermark, feature vector 

1. INTRODUCTION 

The wide use of binary images has brought great interest for 
authentication. Digital watermarking technology seems to be 
a promising way and some schemes have been proposed. In 
[1], the authors proposed a block-based data-hiding scheme 
for binary images that can be used for authentication. They 
shuffle the image and compute the flippability score of each 
pixel. Watermark bits are embedded by flipping pixels that 
have relatively higher flippability scores. The authenticity of 
the image can be decided by comparing the extracted 
watermark with the original watermark. In [3], the authors 
proposed a data-hiding algorithm for binary document 
images based on Distortion-Reciprocal Distortion Measure 
[4]. Pixels that cause less distortion are chosen as candidates 
for flipping. To embed watermark, the authors enforce the 
odd-even feature of non-uniform blocks and employ a 2-D 
shifting to provide security for tamper proofing and 
authentication. Most of existing schemes use content 
independent watermark, thus the sender and the appraiser 
need to transmit the original watermark.  

For the sake of convenience, we propose a new scheme  
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combining content-based watermark with the embedding 
method in [1]. The authentication process doesn’t need the 
original watermark. We study the characteristics of the 
ZMMs for binary images. Experimental results show that 
ZMMs can be used to represent the binary image and to 
decide the authenticity of the image effectively. In order to 
decrease the influence of watermarking on feature vector, we 
split a binary image into two parts by a random mask, one 
for generating feature vector and the other for watermark 
embedding. Zernike moments are usually computationally 
expensive; hence we propose a fast algorithm. Extensive 
experiments show that our scheme can detect malicious 
manipulations effectively.  

The paper is organized as follows. In section 2, we 
describe the Zernike moments, the properties of ZMMs-
based feature vector, and a fast computation algorithm. The 
outline of the proposed system, the splitting of the binary 
image, the authentication process and experimental results 
are given in section 3. Section 4 concludes the paper. 

2. ZERNIKE MOMENTS 

In content-based authentication scheme, extraction of 
feature vector is the most challenging issues. We identify 
Zernike moments to generate feature vector. The definition 
of Zernike moments in the following are based on [7]. 

2.1. Zernike moments and their characteristics  
Zernike moments are based on a set of complex 

polynomials that form a complete orthogonal set over the 
interior of the unit circle, 2 2 1x y . Let the set of these 
polynomials be denoted by{ ( , )}nmV x y  

, , ,( , ) ( , ) ( )exp( )n m n m n mV x y V R jm         (1) 
where n  is a non-negative integer and m  is an integer such 
that | |n m  is non-negative and even. and  represent 
polar coordinates over the unit circle and nmR  are 
polynomials of  (Zernike polynomials) given by 
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Note that , ,( ) ( )n m n mR R . These polynomials are 
orthogonal and satisfy 
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The Zernike moment of order n with repetition m for a 
digital image is  

            * 2 2
, ,

1 ( , ) ( , ), 1n m n m
x y

n
A f x y V x y        (5) 

Note that *
, ,n m n mA A .  

Suppose that one knows all moments ,n mA  up to 
order maxN of ( , )f x y . Using orthogonality of the Zernike 
basis, we can reconstruct the image ( , )f x y   

max

, ,
0

ˆ( , ) ( , )
N

n m n m
n m

f x y A V                       (6) 

As maxN approaches infinity, ˆ ( , )f x y will approach ( , )f x y . 
The reconstruction process is illustrated in Fig.1. For a 

64*64 binary image of letter E, the reconstructed images are 
generated by using Equ.(6). It shows that the lower order 
moments capture gross shape information and the details are 
filled in by higher order moments. According to experiments, 
12-order ZMMs with each quantized into 8 bits is enough 
for the authentication. In the following sections, we adopt 
12-order and 49 ZMMs to generate the feature vector.  

                
      (a)           (b) 6 order   (c) 8 order    (d) 12 order   (e) 14 order 
Fig.1. Reconstruction of a binary image. From left to right: the 
original image, the reconstructed image with order 6, 8, 12 and 14, 
respectively. 

From Fig.1 and the research in [8], we can see that 
ZMMs can provide effective representation of the binary 
image. If a binary image is manipulated, we can measure the 
distance between the ZMM feature vectors of the original 
image and the manipulated image, then decide the 
authenticity of the image. We define the distance as:   

2
1 2 1 2 1, 2,

1
( ( , ), ( , )) ( , ) ( )

N

i i
i

D f x y f x y D Z Z ZMM ZMM (7) 

where 1Z  and 2Z  are feature vectors of 1( , )f x y and 2( , )f x y . 

max max1, 2, , 00 11 20( , , , ) (| |,| |,| |, ,| |)i i i N i N NZ ZMM ZMM ZMM A A A A  

where ,k iZMM is the thk ZMM of the feature vector iZ . 
Smaller distance means better match of two binary images.  
For binary images, the incidental manipulations are usually 
lossless, so we can decide the authenticity of the image by 
the following rule: 

1 2( ( , ), ( , )) 0
(8)

Incidental D f x y f x y
decision

Malicious otherwise
We address the influence of malicious manipulations on 

ZMM feature vector. The experiments are performed on 100 
256*256 binary images downloaded from the Internet. Some 
of them are shown in Fig.2. For each image, we choose 

randomly a block with different size of ,  1,2, ,32l l l , 
and reverse the values of pixels within the block. The 
distance between the original and the tampered images are 
computed using Equ.(7) and shown in Fig.3, where x-axis 
and y-axis represent the tampered block size l  and the 
average distance between the tampered and original images, 
respectively. From Fig.3, we can see that the distance 
increases as the tampered block size increases. So, the 
distance of feature vectors can reflect the degree of content 
change of binary images.  

 

Fig.2. Sample binary images 
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Fig.3. The relationship between distance and l  

2.2. A fast algorithm for computing ZMMs 
Zernike moments are usually computationally expensive. 

According to the invariant watermarking algorithm in [9], it 
takes about 5 minutes to compute the Zernike moments of a 
256*256 gray image with max 5N  using Matlab on a 1.5-
GHz Pentium PC. By using their look-up table method, it 
still needs about 1 minute [9]. So we propose a fast 
algorithm using Matlab.  

Firstly, we compare the times taken by different 
methods using Matlab to compute the following expression: 

                       ( , ) ( , )
x y

C A x y B x y                         (9) 

where A and B are both 2-dimension matrices. The first 
method uses two nested loops, one for x and one for y. In 
each loop, compute A(x,y)B(x,y) and add it to C. The second 
method uses matrix operations in Matlab by rewriting the 
Equ.(9) as (  .* )C SUM A B . In Matlab, SUM(A) means 
sum of all elements in matrix A and .*A B  means 
multiplying corresponding elements of A and B one by one.   

We test these two methods on two matrices, A and B, 
with size 256*256 and data-type double. The time taken to 
compute C in Equ.(9) is 0.2188s for the first method and 
0.0023s for the second method, respectively. We can see 
that the second method is much faster than the first method. 
Because the expression to compute ,n mA  in Equ.(5) is 
similar to that in Equ. (9), the idea of our fast algorithm is 
using matrix method to replace the usually used loop method. 
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In Equ.(5), ( , )f x y  can be regarded as a 2-dimension 
matrix. So we need to get a same-size 2-dimension matrix 
for *

, ( , )n mV . For a given image ( , )f x y  of M N , 
(1 ,1x M y N ), order n and repetition m, the method 
is as follows: 
1) Convert the image into polar coordinates and get two 

matrices to contain ρ and .Get two matrices to contain 
exp( )jm  and , ( )n mR . 

2) Rewrite Equ.(1) as , ,( ) (exp( )) .* ( ( ))n m n mmat V mat jm mat R  ,    
where ( )mat A  represents the M N matrix that 
contains A. 

3) Rewrite Equ.(5) as *
, ,(( 1) / ) ( .* ( ))n m n mA n SUM f mat V .  

Table.1 shows the times taken by the proposed fast 
algorithm, the conventional loop method and the look-up 
table method mentioned in [9]. Zernike moments are 
computed on images in Fig.2 using Matlab on a 1.8-GHz 
Pentium PC, where max 12N . We can see that under the 
same condition, our algorithm is much faster than the look-
up table method mentioned in [9]. That’s important for us to 
test the property of Zernike moments and the performance of 
the authentication scheme on large amount of images.  
Table.1. The seconds taken by different methods to compute 
ZMMs of the images in Fig.2 

Images  Loop method  Method in [9] Our method 
1 139.86 38.13 6.60 
2 142.59 37.18 7.13 
3 157.81 38.93 6.48 
4 103.80 41.44 6.48 

3. PROPOSED AUTHENTICATION SCHEME  

3.1. Outline of the proposed algorithm  
 The block diagram of our scheme is shown in Fig.4. 

The watermarking process is as follows: 
1) Divide the original image 1( , )f x y into two parts, P1 and 

P2, by a secret key K1. 
2) Generate feature vector Z1 from P1 and quantize it. 
3) Embed quantized feature vector into P2 using embedding 

method in [1] and get the watermarked image. 

Received 
Image 2f extract

Marked 
Image  '

1f
Original 
Image 1f block based embeddivide into 

two parts

attack

divide into 
two parts

generate feature vector quantize

quantize

authenticate malicious

incidental2Z

1Z non-zero

zero

compute 1 2( , )D Z Z

generate feature vector  
Fig.4. Embedding and authentication processes 

The authentication process doesn’t need the original 
feature vector. The process is as follows: 
1) Divide the test image 2 ( , )f x y into two parts by key K1. 
2) Generate feature vector Z2 of 2 ( , )f x y  from P1. 
3) Extract watermark from P2 and estimate the feature 

vector Z1 of 1( , )f x y . 
4) Compute distance between feature vectors in step 2 and 3 

using Equ.(7). 
5) Decide the authenticity of 2 ( , )f x y  by Equ.(8). 

3.2. Image splitting and authentication 
In our scheme, the quantized feature vector is embedded into 
the original image. If the feature vector of the watermarked 
image is not equal to that of the original image, then the 
watermarked image itself will be regarded as inauthentic by 
the decision rule in Equ.(8). So we have to guarantee that the 
feature vectors of the original image and the watermarked 
image are equal. We divide the binary image into two 
subspaces [10], one for feature generation and the other for 
watermark embedding.  

We assume that 1( , )f x y and 2( , )f x y are the original and 
watermarked image, respectively. For 1( , )f x y , we generate a 
2-D mask image ( , ) 0,1m x y  controlled by a secret key K1. 
By using the mask ( , )m x y , the image 1( , )f x y  is divided into 
two parts randomly, P1 and P2. If ( , ) 0m i j , 1( , ) 1f i j P ; 
otherwise 1( , ) 2f i j P . We demonstrate the division result in 
Fig.5, where Fig.5 (a), (b), and (c) are the original image, P1 

and P2 , respectively. We can see that both of P1 and P2 can 
be regarded as coarse versions of the original image. P1 is 
used to generate the feature vector Z1 and P2 is used to 
embed watermark. In authentication process, the test image 

2( , )f x y  is also divided into two parts using K1. P1 is used to 
generate feature vector Z2 and P2 is used to extract 
watermark.  

Using such strategy, we can see that watermarking 
affects only P2, while P1 will not be altered. If 2( , )f x y is the 
watermarked image or the losslessly manipulated 
watermarked image, the feature vectors of 1( , )f x y  
and 2( , )f x y  both generated from P1 are the same. The 
watermark can be extracted correctly from P2 of 2( , )f x y and 
restored as the feature vector of 1( , )f x y . The distance 
computed in the step 4 of the authentication process will be 
zero and 2( , )f x y will be regarded as authentic. On the other 
hand, from Fig.5, we can also observe that P1 and P2 of a 
binary image are closely neighboring to each other. If the 
attacker wants to tamper the watermarked image, he will 
have to change pixels from both P1 and P2, thus both of the 
feature vector and the watermark would be modified. The 
distance computed in the authentication process will not be 
equal to zero and the tampered image will be regarded as 
inauthentic.  
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(a) (c)(b)

 

Fig.5. Image splitting 

Fig.6 shows an example of authentication, where 
images (a), (b) and (c) are the original image, the 
watermarked image and the tampered watermarked image, 
respectively. D is the distance computed in step 4 of the 
authentication process. We can see that the watermarked 
image in (b) can be passed as authentic by Equ.(8) with D=0, 
while the tamper in (c) can be detected with D>0.  

(a) (b) D=0  (c) D=2660832

 

Fig.6. (a) original image (b) watermarked image (c) tampered 
watermarked image. The ovals point out the tampered areas.  

3.3. Experimental results 
We test the performance on 100 binary images 

downloaded from Internet. And 49 ZMMs are used to 
generate the feature vector. Each ZMM is quantized into 8 
bits. For each image, we choose randomly a block with size 
of ,  1,2, ,32l l l  and modify these blocks. The results are 
shown in Fig.7, where x-axis and y-axis represent l  and the 
distance computed in the authentication process. From Fig.7, 
we can see that when the block size increases, the distance 
increases. The distance can be used to reflect the degree of 
the tampering.  
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Fig.7. Experimental results 
In Fig.8, we give some examples of authentication 

results when different types of malicious manipulations are 
applied to the watermarked image. From Fig.8, we can 
observe that the proposed scheme can detect the tamper by 
using Equ.(7) and Equ.(8) effectively. 

4. CONCLUSION AND FUTURE WORK 

In this paper, we propose a content-based watermarking 
scheme for binary image authentication. Our main 
contributions are as follows:  
1) Propose to use Zernike moments to generate feature 
vector for binary image authentication. 
2) Split the binary image into two subspaces by a random 
mask controlled by a secret key, thus we can decrease the 
influence of watermarking on the feature vector. 

3) Propose a fast algorithm for computation of Zernike 
moments using Matlab.  
4) The authentication process doesn’t need the original 
watermark and the decision is based on a metric measure. 
Our future directions include: (1) algorithm that can locate 
the tampered areas of binary images; (2) algorithm that can 
differ non-malicious operations, such as transmission errors, 
from malicious attacks. 

(b)(a) (c) (d)

 D=0 D=2479088  D=4167904

 D=0 D=1010512  D=1509040

 

 Fig.8. (a) original images (b) watermarked images (c) erasing (d) 
replacing. The areas in the ovals are tampered 
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