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Abstract—In this paper we present a study of the effects of
data hiding on the power spectra of digital images. Several imper-
ceptible data hiding techniques have been proposed that provide
strong visual security and robustness. Although imperceptible to
the human visual system, the hidden data affects the natural
qualities of the image, such as the image power spectrum. In
this study, we classify a large image database into a number of
categories. For each category, we calculate the slope of the power
spectra for the marked and unmarked images. We note that in
the case of spatial data hiding the average slope of the power
spectra of marked images is 54.93% higher compared to that of
the unmarked images. Also in the cases of transform domain data
hiding we note that the average slope of the power spectra of
the images marked using a discrete cosine (wavelet) transform
(DC(W)T) based technique is higher by 9.12% (38.39%). We
also test a commercially available data hiding software namely
Digimarc corp.’s MyPictureMarc 2005 V1.0. In this case the
average power spectra of the marked images is 35.99% higher.
Hence we see that the proposed scheme is a tool for universal
steganalysis with varying degrees of success depending on the
type of embedding.
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[. INTRODUCTION

Steganography addresses the issue of hiding information
in some host data for various applications including covert
communication, copy protection, copyright protection etc [1],
[2], 3], [4], [5], [6], [7], [8], while steganalysis is concerned
with discovering the presence of hidden messages and/or
extracting the hidden message. Some definitions and several
methods of steganalysis were proposed in the literature [9].
Voloshynovskiy et. al. [10], present an overview of some
key characteristics that could lead to detecting the existence
of hidden information. Johnson et al. [9] gives a good de-
scription of steganalysis of several popular steganographic
software. Current steganalytic methods can be classified into
two categories: one category aims at a specific embedding
method and the other aims at universal stego detection.
A good amount of research has been done on detecting
specific steganographic methods. For instance Fridrich et.
al.[11][12][13] have proposed methods that detect data hidden
using popular algorithms such as Outguess[14], F5 [15] etc..
Farid [16] proposed a universal steganalysis method based
on the Fisher linear classifier[17]. Chandramouli et. al [18]
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propose a general framework for a steganalysis system. In
[19], a Gaussian distributed hidden message was shown to be
detectable due to the non-Gaussian nature of the cover data.
Harmsen [20] modelled message embedding as noise addition
which can amount to low pass filtering of the histogram of the
image.

In this paper, we investigate the effects of data hiding on the
power spectra of images and devise a steganalysis algorithm
that can detect stego data hidden within images using several
classes of data-hiding techniques. Section-II gives an overview
of the power spectrum of digital images. In Section-III we
provide the classification of the image database and present
the properties of the power spectra within these classes. In
Section-IV we provide experimental results of power spectra
calculation after processing these images using different data
hiding algorithms. Finally, Section-V summarizes our work.

II. POWER SPECTRUM

The power spectrum of an image is a crucial image statistic
and is defined [21] as,

1
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where, N is the image dimension in either direction (power
spectrum of a non-square image is calculated by cropping the
image to a largest concentric square sub-image) and k,/N
and k,/N are the discrete spatial frequencies. Torralba et.
al. [22] prove that the average power spectrum of natural
images assumes the form 1/, where 1 < a < 2. The power
spectra of images is usually represented as the slope of the
log-log graph of the spatial frequency versus the amplitude
of the image as seen in Figure-1. Different environment
categories of images exhibit different orientations and fre-
quency distributions, which is captured by the images’ power
spectra [23][24][22]. In Figure-2 we show spectral signatures
for different image categories. Each spectral signature is an
average of 25 test images within the category. In Figure-2 we
show that the differentiation between various image categories
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The power spectra of a sample image
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Fig. 1. Power spectra of a test image of an airplane in flight

[ Image Category [ Avg. Slope of Power Spectra |

Airplanes -1.4140
Buildings -1.2610
Cars -1.2898

Cities -1.3069
Crowds -1.2889
Faces -1.3123
Underwater Fishes -1.3168
Forests -1.2772
Integrated Circuits -1.1179
Microscope Slides -1.2979
MRI Scans -1.2691
People -1.2916
Satellite Images -1.2970
Ships -1.2547

Space Images -1.2727
Storms -1.3294
Artificial Textures -1.0513
Tornadoes -1.3618
Underwater Images -1.3349
X-Ray Images -1.2682

TABLE 1
AVERAGE SLOPE OF THE POWER SPECTRA FOR EACH IMAGE CATEGORY

resides mainly in the relationship between the horizontal and
vertical contours at different scales. These studies show that
the shape of the spectral signature of an image is correlated
with the scale at which major objects in the image are found
(e.g. finer texture and detail in a forest scene, coarser texture
and noise in a waterfall scene, etc.)

ITI. POWER SPECTRA OF THE IMAGES IN THE DATABASE

The image database used in this study comprised of a
collection of 500 images of scenes, objects and people, taken
from the NASA stock photo library [25], the coral NOAA
photo library [26], and the national geodetic survey [27].
These images are classified into one of 20 categories, based on
characteristics such as backgrounds, depths, resolutions, etc.
Figure-3 shows a collection of representation images created
by averaging several images from the same category in the
database. In Table-I, we provide an average value for the slope
of the power spectra for each of the categories in the database.
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Fig. 2. Spectral Signatures of Different Image Categories
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Fig. 3. Average Representation Images Generated for Each Semantic
Category in the Database
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IV. EXPERIMENTAL RESULTS

We marked the test image dataset using four data hiding
techniques, namely: correlation based spatial technique [28],
discrete cosine transform (DCT) based technique [29], discrete
wavelet transform (DWT) based technique [30], and Digi-
marc’s MyPictureMarc 2005 V1.0 adobe photoshop plugin
[31]. Equations-3, 4, and 5 give the embedding function
used in the spatial, DCT, and DWT data hiding schemes
respectively.

Im(xvy) = Im(xay) +ka7 (3)
where, k is the gain factor used to specify the strength of the
embedded data, W}, is the appropriate pseudo random noise
sequence, based on the hidden bit being a 0 or a 1. I,,,(z,y)
represents the m'™ 8x8 spatial block of the host image and
fm(x7y) represents the corresponding marked spatial block.
Each block, I, (z, y), is then spatially rearranged to give the
final stego image I(z,%).

if u,ve Fy
otherwise

I (u,v) + kW,

L (u,v), @

I (u,v) = {
where, k is the gain factor used to specify the strength of the
embedded data, F; represents the midband DCT coefficients,
W), is the appropriate pseudo random noise sequence, based
on the hidden bit being a 0 or a 1. I,, (u, v) represents the m'"
8x8 DCT block of the host image and I,,,(u, v) represents the
corresponding marked DCT block. Each block, I, (u,v), is
then inverse transformed to give the final stego image I(z,y).

I (u,v) + k| L (u, 0) | by,
L (u,v),

I (u U){ if u,v € HL, LH
mAT otherwise

)
where, k is the gain factor used to specify the strength of the
embedded data, HL and LH represent the midband DWT
coefficients, h; is the hidden bit that is to be embedded.
L, (u, v) represents the m*™ DWT coefficient of the host image
and fm(u, v) represents the corresponding marked DWT coef-
ficient. Each coefficient, fm(u, v), is then inverse transformed
to give the final stego image I(z,).

In Table-II, we summarize the average slope of the power
spectra for each of the category of images marked with each of
the data hiding algorithm above. In Table-I1I, we summarize
the percent difference values between average slope of the
power spectra for each of the category of images marked with
each of the data hiding algorithm and that of unmarked images.
From Tables-II and -III, we note that the average power spectra
of the marked images significantly changes compared to the
unmarked host images. Although each of the four algorithms
are designed as imperceptible means of data hiding, we note
that they significantly increase the slope of the power spectra
of the images by marking the perceptibly significant areas of
the image.

[ TImage Category [ Spatial [ DCT | DWT | Digimarc |
Airplanes -0.6616 | -1.2466 | -0.8892 -0.8938
Buildings -0.6337 | -1.1758 | -0.8438 -0.8369

Cars -0.5266 | -1.1633 | -0.7322 -0.8076
Cities -0.6913 | -1.2181 | -0.9155 -0.8858
Crowds -0.6013 | -1.2011 | -0.8216 -0.8505
Faces -0.6382 | -1.2063 | -0.8491 -0.8618
Underwater Fishes | -0.5878 | -1.1883 | -0.8044 -0.8491
Forests -0.6049 | -1.1765 | -0.8154 -0.8340
Integrated Circuits | -0.6067 | -1.0798 | -0.8246 -0.7671
Microscope Slides | -0.5923 | -1.1930 | -0.8169 -0.8424
MRI Scans -0.6607 | -1.1936 | -0.8929 -0.8797
People -0.5860 | -1.1794 | -0.7970 -0.8223
Satellite Images -0.4915 | -1.1486 | -0.6876 -0.7879
Ships -0.5347 | -1.1410 | -0.7459 -0.7799
Space Images -0.4591 | -1.1156 | -0.6624 -0.7808
Storms -0.5293 | -1.1411 | -0.6799 -0.7707
Artificial Textures | -0.5293 | -1.0066 | -0.7537 -0.7050
Tornadoes -0.4645 | -1.1472 | -0.6655 -0.7873
Underwater Images | -0.5914 | -1.2048 | -0.8088 -0.8557
X-Ray Images -0.5178 | -1.1195 | -0.7195 -0.7746
TABLE II

AVERAGE SLOPE OF THE POWER SPECTRA FOR MARKED IMAGES

[ Image Category [ Spatial [ DCT [ DWT [ Digimarc |
Airplanes -5321% | -11.84% | -37.11% | -36.79%
Buildings -49.75% | -6.76% | -33.08% | -33.63%

Cars -59.17% | -9.81% | -43.23% | -37.39%
Cities -47.10% | -6.79% | -29.95% | -32.22%
Crowds -53.35% | -6.81% | -36.26% | -34.01%
Faces -51.37% | -8.08% | -3530% | -34.33%
Underwater Fishes | -55.36% -9.76% | -3891% | -35.52%
Forests -52.64% | -7.88% | -36.16% | -34.70%
Integrated Circuits | -45.73% | -3.41% | -26.24% | -31.38%
Microscope Slides | -54.36% -8.08% | -37.06% | -35.10%
MRI Scans -47.94% | -5.95% | -29.64% | -30.68%
People -54.63% | -8.69% | -38.29% | -36.33%
Satellite Images -62.10% | -11.44% | -46.99% | -39.25%
Ships -57.38% | -9.06% | -40.55% | -37.84%
Space Images -63.93% | -12.34% | -47.95% | -38.65%
Storms -60.19% | -14.16% | -48.86% | -42.03%
Artificial Textures | -49.65% | -4.25% | -28.31% | -32.94%
Tornadoes -65.89% | -15.76% | -51.13% | -42.19%
Underwater Images | -55.70% -9.75% | -39.41% | -35.90%
X-Ray Images -59.17% | -11.73% | -43.27% | -38.92%
TABLE III

PERCENTAGE DIFFERENCE OF THE AVERAGE SLOPE OF THE POWER
SPECTRA BETWEEN MARKED AND UNMARKED IMAGES

V. CONCLUSION

We presented an in depth analysis of the effects of data
hiding using several techniques on the image power spectra.
Although, current data-hiding techniques are imperceptible to
the human eye, we note from the experimental results that
the image power spectra is severely affected by data hiding.
From previous studies on natural image qualities and the
experimental results obtained by our research we also conclude
that the slope of the power spectra of images which are
under the same category are very close to each other. From
experimental results, we note that in the case of spatial data
hiding the average power spectra of marked images is 54.93%
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higher as compared to that of the unmarked images. In the
cases of transform domain data hiding we note that the average
power spectra of the images marked using a DCT (DWT)
based technique is higher by 9.12% (38.39%). Upon testing a
commercially available data hiding software namely Digimarc
corp.’s picture marc 2005 V1.0, we note that the average power
spectra of the marked images is 35.99% higher.
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