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ABSTRACT

This paper proposes a new class of Hilbert transform pairs
of orthonormal symmetric wavelet bases. The associated or-
thonormal filter banks with exactly linear phase responses are
realized by using complex and real allpass filters, respectively.
The filter characteristics with the maximally flat responses are
investigated to show the effectiveness of the proposed pairs.

Index Terms— Allpass filter, orthonormality, symmetry,
wavelet transform, Hilbert transform

1. INTRODUCTION

Hilbert transform pairs of wavelet bases have been proposed
and found to be successful in many signal and image process-
ing applications [1]∼[6]. It has been proven in [4], [7] and
[8] that the half-sample delay condition between two scal-
ing lowpass filters is the necessary and sufficient condition
for the corresponding wavelet bases to form a Hilbert trans-
form pair. The design procedures of Hilbert transform pairs of
wavelet bases have been also described in [1]∼[6], where FIR
filters (corresponding to the compactly supported wavelets)
were mainly handled. It is well-known that there does not
exist any nontrivial compactly supported orthonormal sym-
metric wavelets, except for the Haar wavelet. On the other
hand, a class of orthonormal symmetric wavelets can be re-
alized by using IIR allpass filters [9], [10]. A few work has
addressed IIR solutions for Hilbert transform pairs of wavelet
bases [5]. The IIR orthogonal solution proposed in [5] does
not have linear phase responses.
In this paper, we propose a new class of Hilbert transform

pairs of orthonormal symmetric wavelet bases. Two orthonor-
mal filter banks associated with the wavelet bases are realized
by using complex and real allpass filters, respectively, and
thus have exactly linear phase responses. The maximally flat
solutions for the allpass filters are given to obtain the maxi-
mum numbers of vanishing moments. Finally, the filter char-
acteristics are investigated to demonstrate its effectiveness.

This work was supported in part by JSPS (Japan Society for the Promo-
tion of Science) Grants-in-Aid for Scientific Research (C) (No.18500076),
and in part by the Telecommunications Advancement Foundation.

2. HILBERT TRANSFORM PAIRS OF WAVELETS

It is well-known that orthonormal wavelet bases can be gen-
erated by two-band orthogonal filter banks {Hi(z), Gi(z)},
where i = 1, 2. We assume that Hi(z) are lowpass filter, and
Gi(z) are highpass. The orthonormality condition of Hi(z)
and Gi(z) is given by⎧⎪⎨

⎪⎩
Hi(z)Hi(z−1) +Hi(−z)Hi(−z−1) = 2

Gi(z)Gi(z−1) +Gi(−z)Gi(−z−1) = 2

Hi(z)Gi(z−1) +Hi(−z)Gi(−z−1) = 0

. (1)

Let φi(t), ψi(t) be the scaling and wavelet functions, re-
spectively. The dilation and wavelet equations give the scal-
ing and wavelet functions;⎧⎪⎪⎨

⎪⎪⎩
φi(t) =

√
2

∑
n

hi(n)φi(2t − n)

ψi(t) =
√
2

∑
n

gi(n)φi(2t − n)
, (2)

where hi(n) and gi(n) are the impulse responses of Hi(z)
and Gi(z), respectively. For φi(t) and ψi(t) to be (anti-)
symmetrical,Hi(z) andGi(z)must have exactly linear phase
responses.
It has been proven in [4], [7] and [8] that two wavelet

functions ψ1(t) and ψ2(t) form a Hilbert transform pair;

ψ2(t) = H{ψ1(t)}, (3)

that is

Ψ2(ω) =

{
−jΨ1(ω) (ω > 0)

jΨ1(ω) (ω < 0)
, (4)

if and only if two scaling lowpass filters satisfy

H2(ejω) = H1(ejω)e−j ω
2 , (5)

where Ψi(ω) are the Fourier transform of ψi(t). This is the
half-sample delay condition between two scaling lowpass fil-
ters. Equivalently, the scaling lowpass filters should be offset
from one another by a half sample. Eq.(5) is the necessary and
sufficient condition for two wavelet bases to form a Hilbert
transform pair.
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3. ORTHONORMAL SYMMETRIC SOLUTION

In this section, we propose a new class of Hilbert transform
pairs of orthonormal symmetric wavelet bases. Firstly, we
use a complex allpass filter Ac(z) of order 2N1 to construct
H1(z) and G1(z) as shown in [10];⎧⎪⎪⎨

⎪⎪⎩
H1(z) =

1√
2
[Ac(z) + Ãc(z)]

G1(z) =
z−1

j
√
2
[Ac(z)− Ãc(z)]

, (6)

where Ac(z) is defined by

Ac(z) = ejη

N1∑
n=0

ac
2nz−2n + j

N1−1∑
n=0

ac
2n+1z

−2n−1

N1∑
n=0

ac
2nz−2n − j

N1−1∑
n=0

ac
2n+1z

−2n−1

, (7)

where ac
n = ac

2N1−n are real, and η = ±π/4 for even N1,
η = ±3π/4 for odd N1. Ãc(z) has a set of coefficients that
are complex conjugate with ones of Ac(z).
Let θc(ω) be the phase response of Ac(z). From Eq.(7),

θc(ω) = η + 2ϕ(ω), (8)

where when N1 is even,

ϕ(ω) = tan−1

2
N1/2−1∑

n=0

ac
2n+1 cos(N1 − 2n − 1)ω

ac
N1
+ 2

N1/2−1∑
n=0

ac
2n cos(N1 − 2n)ω

, (9)

and when N1 is odd,

ϕ(ω) = tan−1

ac
N1
+ 2

(N1−3)/2∑
n=0

ac
2n+1 cos(N1 − 2n − 1)ω

2
(N1−1)/2∑

n=0

ac
2n cos(N1 − 2n)ω

.

(10)

Therefore we have{
H1(ejω) =

√
2 cos θc(ω)

G1(ejω) =
√
2 sin θc(ω)e−jω

. (11)

It is clear that H1(z) and G1(z) have exactly linear phase
responses and satisfy the orthonormality condition in Eq.(1).
The vanishing moments is also one of the desired proper-

ties for wavelets. To obtain the maximum numbers of vanish-
ing moments, H1(z) and G1(z) should have the maximally
flat magnitude responses. In [10], the closed-form formula

for the maximally flat solution has been given by

ac
n =

⎧⎪⎪⎨
⎪⎪⎩

(
2N1

n

)
(n : even)

−
(
2N1

n

)
tan

η

2
(n : odd)

, (12)

for n = 0, 1, · · · , 2N1. It is clear that once N1 is given, the
filter coefficients ac

n can be calculated. The maximally flat
filter H1(z) has 2N1 zeros at z = −1 (i.e., ω = π), thus we
obtain the wavelet bases with 2N1 vanishing moments.
Next, we use a real allpass filter Ar(z) of order N2 to

construct H2(z) and G2(z) as shown in [9];⎧⎪⎪⎨
⎪⎪⎩

H2(z) =
1√
2
[zKAr(z2) + z−K−1Ar(z−2)]

G2(z) =
1√
2
[zKAr(z2)− z−K−1Ar(z−2)]

, (13)

whereK is integer and Ar(z) is defined by

Ar(z) = z−N2

N2∑
n=0

ar
nzn

N2∑
n=0

ar
nz−n

, (14)

where ar
n are real, and ar

0 = 1. Let θr(ω) be the phase re-
sponse of Ar(z),

θr(ω) = −N2ω + 2 tan−1

N2∑
n=0

ar
n sinnω

N2∑
n=0

ar
n cosnω

. (15)

Therefore the frequency responses of H2(z) and G2(z) are
given by⎧⎪⎨

⎪⎩
H2(ejω) =

√
2 cos{θr(2ω) + (K +

1
2
)ω}e−j ω

2

G2(ejω) =
√
2 sin{θr(2ω) + (K +

1
2
)ω}ej( π

2 −ω
2 )

.

(16)

It can be seen thatH2(z) andG2(z) have exactly linear phase
responses and satisfy the orthonormality condition in Eq.(1).
Similarly, the closed-form formula for the maximally flat

solution has been given in [9] by

ar
n =

(
N2

n

) n∏
i=1

N2 − i − K

2
+
3
4

i+
K

2
+
1
4

, (17)

for n = 0, 1, · · · , N2. It can be seen that the filter coefficients
ar

n are dependent on not only N2 but also K. An inappro-
priate K will cause a bad magnitude response with an unde-
sired zero and bump nearby ω = π/2. Therefore, it has been
pointed out in [9] thatK = 2(N2−2k) orK = 2(N2−2k)−1
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must be chosen to obtain a pair of reasonable lowpass and
highpass filters, where k = 0, 1, · · · , N2. The maximally flat
filter H2(z) has 2N2 + 1 zeros at z = −1 (i.e., ω = π), thus
the corresponding wavelet bases possess 2N2 + 1 vanishing
moments.
To form a Hilbert transform pair of wavelet bases, two

scaling lowpass filtersH1(z) andH2(z)must satisfy the half-
sample delay condition in Eq.(5). That is, their magnitude
responses are the same, and the phase responses are different
with a half sample. It can be seen in Eqs.(11) and (16) that
the phase condition have been already satisfied, thus, we only
need to consider the magnitude condition. It is known that
H1(z) has 2N1 zeros at z = −1, while H2(z) has 2N2 +
1 zeros at z = −1. To ensure that H1(z) and H2(z) have
a close number of zeros at z = −1 as possible, we should
choose N1 = N2 or N1 = N2 + 1. Therefore, the resulting
pairs of orthonormal symmetric wavelet bases have an almost
same number of vanishing moments. For H1(z) and H2(z)
to approximately satisfy the magnitude condition, we must
investigate the magnitude responses and then appropriately
chooseK. See design example in detail.

4. DESIGN EXAMPLE

In this section, we will show a design example with the max-
imally flat frequency response and examine the filter charac-
teristics. Firstly, we have designed H1(z) with N1 = 2, and
show its magnitude response in Fig.1 in the solid line. Note
that the passband gain has been normalized to 1. Next, we
set N2 = N1 − 1 = 1 and N2 = N1 = 2 to design H2(z).
When N2 = 1, K = 1, 2 and K = −2,−3 can be chosen,
while when N2 = 2, K = 0, 3, 4 and K = −1,−4,−5.
It should be noted that two filters H2(z) with K = K1 and
K = −K1 − 1 have the same magnitude response, where
K1 is non-negative integer. Therefore, we will investigate
the magnitude responses ofH2(z) with non-negativeK only.
The magnitude responses of H2(z) with N2 = 1,K = 1, 2
and N2 = 2,K = 0, 3, 4 are shown in Fig.1 also. It is seen
in Fig.1 thatH2(z) have the closer magnitude responses with
H1(z) when N2 = 2, compared with N2 = 1. The difference
of the magnitude responses between H1(z) and H2(z) with
N2 = 2 are shown in Fig.2. It is clear that when K = 3, two
filters have the closest magnitude responses. Therefore, we
choose H2(z) with N2 = 2,K = 3 for H1(z) with N1 = 2.
For H1(z) with N1 = 1 ∼ 4, the best H2(z) are listed in Ta-
ble 1. The scaling and wavelet functions obtained fromH1(z)
with N1 = 2 and H2(z) with N2 = 2,K = 3 are shown in
Fig.3. φ1(t) and φ2(t) are symmetrical and satisfy the half-
sample delay condition, while ψ1(t) and ψ2(t) are symmet-
rical and antisymmetrical, respectively. The spectrum of the
obtained wavelet functions are shown in Fig.4, which are en-
larged twice for comparison. The spectrum Ψ1(ω) + jΨ2(ω)
of ψ1(t) + jψ2(t) shows that it approximates zero for ω < 0,
as expected if ψ1(t) and ψ2(t) form a Hilbert transform pair.

Table 1. Hilbert transform pair {H1(z), H2(z)}
H1(z) H2(z)
N1 = 1 N2 = 1, K = 2
N1 = 2 N2 = 2, K = 3
N1 = 3 N2 = 3, K = 2
N1 = 4 N2 = 4, K = 4

5. CONCLUSION

In this paper, we have proposed a new pair of orthonormal
symmetric wavelet bases that form the Hilbert transform. Two
orthonormal filter banks associated with the orthonormal sym-
metric wavelet bases have been constructed by using complex
and real allpass filters, and thus have exactly linear phase re-
sponses. The maximally flat solutions for the allpass filters
have been given to obtain the maximum numbers of vanishing
moments. Finally, the filter characteristics have been investi-
gated to demonstrate the effectiveness of the proposed pairs.
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Fig. 3. Scaling and wavelet functions withN1 = N2 = 2 and
K = 3.
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