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Abstract – Symmetric extension is typically employed in 
subband/wavelet image coders to improve compression per-
formance, particularly at the image boundaries. This paper 
introduces improvements to the symmetric extension filter 
bank.  The filter bank implementation employs a cyclic fre-
quency domain representation and is able to accommodate 
IIR approximations that effectively have perfect stopband 
suppression.  Enhancements are also introduced at the multi-
rate system level. The new implementation offers greater 
flexibility in choice of filters and is shown to result in better 
compression performance. 
 
 
I.  Introduction 

In this paper, we present an implementation of the sym-
metric extension method [1][2] for subband/wavelet image 
compression that results in improved performance. The new 
implementation employs cyclic filter banks, which were con-
sidered in [4]. These filter banks provide a sampled frequency 
domain representation for analysis and synthesis and can be 
designed to have perfect reconstruction. Within this frame-
work, we develop cyclic frequency domain realizations of 
time-domain symmetric extension for image compression. In 
the past, not all the possible time-domain symmetric exten-
sions have been implemented using the cyclic filter bank. 
And the necessary conditions for implementing time-domain 
symmetric extension in the frequency domain using cyclic 
filter bank have not been carefully studied.  

In this work, the analysis and synthesis filters employed 
are still linear phase filters, such as the 9/7 filters [7], but are 
implemented in the cyclic frequency domain. The new frame-
work accommodates both FIR filters and IIR approximations 
in a natural way, all with perfect reconstruction. Moreover, 
this framework represents a generalization of the symmetric 
extension method  [1][2] in that it can accommodate IIR fil-
ters with both rational and irrational transfer functions—a 
convenient property not present in other formulations—that 
allows one to realize a variety of useful wavelet packet de-
compositions. Under the constraint of symmetric extension, 
these filters can obtain perfect stopband attenuation with ex-
act reconstruction and, in wavelet vernacular, represent infi-
nite support orthogonal bases. 

In addition, we present enhancements to the design from a 
system level. In particular, we employ spectral reversal cor-
rection and a transitional band normalization approach to 
designing the constituent filters of the symmetric extension 

wavelet packet transform.  The compression performance of 
the new method is evaluated using the SPIHT algorithm [7] 
and is shown to outperform the popular decompositions based 
on the biorthogonal 9/7 filters and the 28/28 filters [8], as 
well as the 8×40 GenLOT [10]. 

 
II. Cyclic Domain Symmetric Extension  

Without loss of generality, a finite length signal can be 
treated as one period of an infinite duration periodic signal. If 
such a periodic signal x(n) with period N is filtered by an ar-
bitrary filter h(n), then the output y(n) is also periodic with 
period N. DFTs can be used to represent this convolution, that 
is   
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for k=0, 1, 2, …, N-1, where X(k) and Y(k) are the N-point 
DFTs of x(n) and y(n) respectively and H( ) is the discrete-
time Fourier transform of h(n).  Cyclic filter banks are based 
on this perspective. Further details may be found in [4]-[6]. 
Here we use cyclic filter banks as the framework for the sym-
metric extension method. 

The symmetric extension method exploits symmetry in 
the analysis and synthesis filters in conjunction with reflect-
ing the image about its boundary points. To the first point, 
lowpass symmetric filters can have even length (the Half 
Sample or HS form) or odd length (the Whole Sample or WS 
form). The corresponding highpass filters are HS anti-
symmetric and WS symmetric respectively. To the second 
point, there are several ways to create symmetry about the 
image boundary. The two basic extensions employed in the 
symmetric extension method are whole sample (WS) and half 
sample (HS) extensions [2][3].  For WS-extensions, a se-
quence (a, b, c, d) is extended about the last sample point to 
form (a, b, c, d, c, b, a). To realize an HS-extension, the last 
sample point is repeated. Thus for the example sequence 
above, the HS-extension would be (a, b, c, d, d, c, b, a). 

To employ the symmetric extension method in a maxi-
mally decimated filter bank, sample symmetry must be pre-
sent both after filtering and after downsampling. Careful at-
tention should be paid to the nature of the signal symmetry, 
as it can change after downsampling. As a case in point, an 
HS-symmetric or antisymmetric signal is no longer symmet-
ric after downsampling [2][3]. However, a WS-symmetric 
signal is symmetric after downsampling. In the next subsec-
tions, we take a closer look at the symmetry issues in the con-
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text of analysis-synthesis.   
 
A.   Whole Sample Symmetry 

To start, consider the case of an even length signal. If we 
perform a WS-symmetric extension on both sides, then after 
filtering, the signal will still be WS-symmetric on both sides. 
After downsampling, one side will be WS-symmetric; the 
other side will be HS-symmetric. It is common that for multi-
level decompositions, mixed symmetric WS-HS bands of this 
type will need to be successively split several times. And, 
since the same WS-symmetric filter is typically applied again 
for the subsequent decompositions, the HS-symmetric side of 
the signal needs to be reverted back to WS symmetry to en-
sure downsampling can be performed for the next split. Such 
a conversion is easy to do in the time domain. All that is re-
quired is to remove one sample. For example, if the sequence 
were (a, b, c, c, b, a), one removes the HS reflection sample 
to obtain (a, b, c, b, a).  In the popular subband/wavelet cod-
ers, this change of symmetry operation (e.g. for 512×512 im-
ages using the 9/7 filters) is typically performed in between 
each successive level of decomposition. 

In contrast to other symmetric extension implementations, 
here filtering is performed in the cyclic frequency domain via 
equation (1). By employing the properties of the DFT, down-
sampling can be performed directly on the filtered spectrum. 
However, in the case the size-limited change of symmetry 
mentioned above from WS to HS, direct conversion in the 
cyclic frequency domain is not computationally efficient. In 
fact, it is often easier to transform (IDFT) the sampled spec-
trum to the time domain first, modify the symmetry from HS 
to WS, and then transform back to the cyclic frequency do-
main, all of which is not attractive from a computation per-
spective. Thus, this type of change in symmetry is best 
avoided.  

Symmetry conditions after decimation are different for 
odd length signals, in that no change of symmetry is needed. 
The geometry is such that after downsampling the resulting 
subband is WS-symmetric on both sides, and further decom-
positions can be performed easily in the same way all in the 
cyclic frequency domain. Thus, change of symmetry during 
multilevel decompositions can be avoided with a dyadic de-
composition structure and by using odd-length signals and 
WS-symmetric filters.  We hasten to point out that in this 
case the length of the high-frequency band is shorter than that 
of the low-frequency band by 1. Consequently for multilevel 
uniform band decompositions, the change of symmetry prob-
lem remains for the high-frequency bands. 
 
B.    Half Sample Symmetry 

 Even-length biorthogonal wavelet filters have HS sym-
metry. For convenient downsampling, we wish the output of 
the filtering to be WS-symmetric, as mentioned earlier.  Thus, 
HS-symmetric extension on the input signal is required for 
HS-symmetric filters. In this case, the output of the lowpass 
HS-symmetric filter is WS-symmetric. The output of the cor-
responding highpass HS-antisymmetric filter is WS-
antisymmetric. 

The decimation structure for HS-symmetric & antisym-

metric filters is different from that for WS-symmetric filters. 
It can be shown that as long as the original signal is of even 
length, after decimation, the low-frequency band is HS-
symmetric and the high-frequency band is HS-antisymmetric.  
Both bands in this case are ready for further decomposition, 
in that no change of symmetry is required. Recall for WS-
symmetric filters, there is at least one subband that needs a 
change of symmetry. This property makes HS-
symmetric/antisymmetric filters more convenient  than WS-
symmetric filters when symmetric extension is performed in 
the cyclic frequency domain. 

 
C.  Spectral Reversal Correction 

When a subband decomposition is performed, the spec-
trum of the high frequency subband is reversed. This is a con-
sequence of the spectral aliasing associated with the down-
sampling operation. To achieve higher performance for wave-
let packet symmetric extension (which we implement with 
HS symmetric filters on even length signals), we incorporate 
spectral reversal correction for the high frequency bands. 

Using spectrum reversal correction, both low and high 
frequency subbands are HS-symmetric and are automatically 
positioned for the next level decomposition. The subband tree 
structure underlying the decomposition can be expressed as a 
cascade of one-level decompositions. That is, assume that  

)(nC p
x    ( 1...,,2,1,0 Nn ) are the x band wavelet coeffi-

cients at the pth ( ...,2,1,0p ) level, where N is even. 
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where H( ) and G( ) are the discrete-time Fourier trans-
forms of the lowpass and highpass filters respectively, and 
Ul(k) and Uh(k) are the output magnitude spectra from the 
lowpass and highpass filters respectively. 
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out that when cascading, the IDCT in step 4 and the DCT in 
step 1 for the next level decomposition cancel out, which 
reduces complexity. The process for reconstructing from sub-
bands is a straightforward dual operation and thus is omitted 
here. 
 
D. The Effect from Change of Symmetry 

Recall that if the decomposition structure is not dyadic, 
change of symmetry is unavoidable for WS-symmetric filters. 
For HS-symmetric filters such symmetry changes are not 
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needed. Therefore, computationally WS-symmetric filters are 
not particularly efficient for realizing symmetric extension in 
the cyclic frequency domain. Interestingly, it is possible to 
convert WS-symmetric filters to HS-symmetric filters with 
identical magnitude frequency responses. The only issue is 
that the resulting HS-symmetric filters become IIR. Fortu-
nately, this does not pose a problem in our case because we 
implement the cyclic frequency domain representation of the 
filter. 

This conversion has been tested on the 9/7 filters for uni-
form the subband decomposition structure. By conversion of 
the 9/7 filters to the HS form, the change of symmetry is 
avoided (both converted and unconverted 9/7 filters have 
exactly the same frequency response magnitude). Our ex-
perimental results show that the converted 9/7 filters lead to 
higher compression performance than the originals. 
 
III. Condensed Wavelet Packet Symmetric Extension 

The proposed cyclic frequency domain formulation of 
symmetric extension provides greater flexibility in construct-
ing linear-phase orthogonal wavelet packet decompositions. 
The lowpass and highpass analysis/synthesis wavelet filters 
are related by the equations [12]: )()( )( HeG j ,  
where H( ) and G( ) are the lowpass and highpass filters 
respectively,  1)()( 22 GH  and 0)(inf

2||
H . To 

illustrate how this flexibility can be applied to implementa-
tion, consider the Meyer wavelet of the form  
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To improve coding performance, we consider the analysis 

filters as a system and normalize the constituent transition 
bands within the multilevel decompositions.  This was the 
preferred approach for implementing tree-structured subband 
filters for audio and speech coding applications [9].  Instead 
of employing the same filter repeatedly for all levels of de-
composition (as has been the wavelet convention), different 
filters are employed at different levels where the filter transi-
tion bands are made progressively wider for successive levels 
down the tree [9].  With wider transition widths, the effective 
filter lengths can be made progressively shorter, resulting in 
more compact wavelet bases. This approach is now illustrated 
for a three-level decomposition using the Meyer wavelet.  

The filter for the first split is chosen to have a transition 
region of /4: 
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For the second level the transition region is specified as /2: 
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The third and last level has a transition region of : 

32 2
cos)(H  0                    (6) 

Because the transition regions are doubled for each decima-
tion stage in the tree, the actual transition regions when 
mapped to the original rate are identical. Since H0( ), H1( ) 
and H2( ) are orthogonal analysis-synthesis filters, perfect 
reconstruction is preserved in this process. Inspection of the 
resulting wavelets shows that  the bases are effectively more 
compact or condense compared to normal dilation wavelet 
bases, hence the name  “condensed wavelets.” 
 
IV. Compression Performance of Condensed Wavelet 

Packet Symmetric Extension 

To assess the relative performance of  the proposed ap-
proach, a  3-level uniform condensed wavelet packet decom-
position was evaluated on the images: Barbara, Goldhill, 
Lena, Café, Bike, and Woman using the  SPIHT [7] algo-
rithm. An additional 3-level dyadic decomposition of the 
lowest frequency band was performed as part of the decom-
position, which is known to be a good subband partitioning 
for natural images. This particular tree structure is called the 
3+3 structure in [8].  

The results of these comparisons are shown in Table 1. In 
all cases, symmetric extension was used in the systems we 
compared. In particular, the condensed wavelet packet de-
composition (denoted CWP) is compared with a 6-level dy-
adic decomposition with 9/7 filters; a  3+3 wavelet packet 
transform using the 28/28 filters; a  3+3 wavelet packet trans-
form using 9/7 filters; and the 8×40 GenLOT from [10]. The 
data we present here for the GenLOT was taken directly from 
reference [10]. In selecting the filters for the comparison, we 
chose the  28/28 filters because they have the highest com-
pression performance for the 3+3 decomposition structure 
among all the FIR biorthogonal wavelet filters tested by the 
authors.  

As can be seen by inspecting Table 1, the condensed 
wavelet packet symmetric extension method generally out-
performs the others for all coding rates. The most dramatic 
gain is a 2.2 dB improvement over the 6-level dyadic 9/7 fil-
ter decomposition for the image Barbara. At the same time, 
unlike other wavelet packet transforms, it still keeps 0.2 to 
0.6 dB gain over the 6-level dyadic 9/7 filter decomposition 
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for the remaining images, which has less oscillatory charac-
teristics. 

 
       

 9/7 
(dyadic) 

CWP 
(3+3) 

28/28 
(3+3) 

9/7  
(3+3) GenLOT

Bpp                                PSNR 
Lena (512×512) 

0.125 31.10 31.19 31.14 31.08 *31.16 
0.25 34.13 34.35 34.24 34.06 *34.23 
0.5 37.24 37.50 37.33 37.09 *37.32 
1 40.47 40.65 40.46 40.22 *40.43 
2 45.25 45.39 45.18 44.83 --- 

Barbara (512×512) 
0.125 24.86 26.30 26.30 25.83 *26.37 
0.25 27.59 29.54 29.41 28.64 *29.53 
0.5 31.40 33.60 33.27 32.38 *33.47 
1 36.44 38.41 37.96 37.11 *38.08 
2 42.75 44.27 43.95 43.02 --- 

Goldhill (512×512) 
0.125 28.49 28.63 28.56 28.55 *28.60 
0.25 30.57 30.83 30.70 30.67 *30.79 
0.5 33.14 33.45 33.27 33.13 *33.36 
1 36.58 36.89 36.65 36.45 *36.80 
2 42.10 42.38 42.13 41.81 --- 

Café (512×512) 
0.125 20.61 20.85 20.79 20.72 --- 
0.25 22.95 23.23 23.05 22.94 --- 
0.5 26.43 26.73 26.39 26.23 --- 
1 31.68 31.76 31.19 30.99 --- 
2 38.92 38.68 38.08 37.87 --- 

Bike (512×512) 
0.125 25.74 26.32 26.11 25.95 --- 
0.25 29.01 29.54 29.13 28.95 --- 
0.5 32.94 33.36 32.78 32.57 --- 
1 37.68 37.91 37.24 37.02 --- 
2 43.92 43.98 43.31 43.02 --- 

Woman (512×512) 
0.125 27.32 27.62 27.58 27.35 --- 
0.25 29.95 30.26 30.15 29.87 --- 
0.5 33.59 33.95 33.73 33.40 --- 
1 38.31 38.59 38.32 38.01 --- 
2 44.13 44.39 44.13 43.82 --- 

 
Table 1. Coding results for comparison. Bit rate (bpp)/PSNR(dB).  

*Data quoted from [10] 
 

In addition to the improved compression performance, the 
condensed wavelet packet symmetric extension algorithm is 
attractive computationally. If the image dimension is N=2m, 
the total computational cost for the 3-level uniform con-
densed wavelet transform is about 2m+1.3 multiplications 
and 6m-4 additions per data point. Thus, if  N=512, then 19.3 
multiplications and 50 additions would be required. Dividing 
the image    into smaller blocks reduces the computational 
complexity, leading to a transform that is competitive with 
the implementation of 9/7 filters. Table 2 compares the com-

putational complexity of the 128×128 block size CWP with 
the other conditions used in Table 1.  Much of the CWP com-
plexity may be attributed to the N-point DCTs. Using fast 
DCT methods e.g. [11], additional reduction in complexity 
can be realized.  Further reduction in computational complex-
ity at this point remains a work in process. 
 
 

Transform No. of mult. No. of add.
CWP (3+3) 13.3 33 

9/7 (6-level dyadic) 12 18.7 
9/7 (3+3) 27.2 42.3 

28/28 (3+3) 84.6 163.1 
8×40 GenLOT 36 60 

 
Table 2. Comparison of computational complexity of the 128×128 

block-size condensed wavelet packet (CWP) transform 
with other types of transform 
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