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ABSTRACT 

 
This paper proposes a novel segmentation-driven direction-
adaptive discrete wavelet transform (SD DADWT), wherein the 
adaptation of the directional wavelet bases is performed on the 
segments describing the natural geometry of the image. First, a 
multi-resolution segmentation of the image is performed, obtained 
through an Edgmentation procedure. The optimum lifting 
directions are then selected for each segment and at each 
resolution. The proposed SD DADWT retains the inherent 
advantages offered by a multiresolution representation of the 
geometric features in the image, and in the same time provides a 
sparse image representation via DADWT. Preliminary 
experimental results obtained in a coding application show that the 
visual quality of the reconstructed image can be further improved 
by applying a geometrically-oriented transform on segments that 
approximate the natural borders in the image. 
 
Index Terms — adaptive wavelets, scalable image coding 
 

1. INTRODUCTION 
 
Providing a scalable representation of images and video is of 
paramount importance in data transmission over heterogeneous 
networks in order to allow for the adaptation of the source to the 
inherently variable network conditions and terminal characteristics. 
In this context, sparse signal representations and embedded 
quantization and coding are the keys in order to enable scalability. 
As an example, recent years have witnessed the advent of the 
wavelet-based JPEG 2000 standard for scalable image compression. 
In this context, the wavelet transform offers a sparse multiresolution 
image representation, and enables a rich set of functionalities, such as 
resolution and quality scalability, and region-of-interest coding. 

Another challenge in the application of wavelets in both 
practice and theory is capturing the geometric features in images 
and accounting for these features. In this context, transforms that 
perform directional adaptation of the bases include the bandelets of 
[1] or lifting-based [2] approaches locally-adapting the filtering 
directions to the geometric flow in the image [3]-[4]. Belonging to 
this second category, the direction-adaptive discrete wavelet 
transform (DADWT) of [5] decomposes the image into rectangular 
regions and adapts the orientation of the wavelet basis in each 
region. When implemented in a practical coding system, the 
DADWT significantly improves the compression performance if 
compared to an equivalent system employing the classical DWT [5]. 

From a complementary perspective, another important 
challenge in nowadays applications is capturing and representing 
the geometric features present in images. In this sense, providing a 

multi-resolution image segmentation and shape extraction are two 
major pre-processing objectives for any image analysis task or 
object-based coding approach.  

In this paper we propose a multi-resolution image 
representation that addresses this combined problem. The paper 
proposes a novel segmentation-driven direction-adaptive discrete 
wavelet transform (SD DADWT), wherein the adaptation of the 
directional wavelet bases is performed both in terms of orientation, 
similar to DADWT, as well as spatially, i.e. on the segments 
capturing the natural geometry of the image. In this way, the 
proposed SD DADWT offers a multiresolution representation of 
the geometric features in the image, via a multiresolution image 
segmentation, and in the same time provides a sparse image 
representation via DADWT. The transform is synthesized based on 
lifting, which enables a fast implementation, as well as a lossless 
transform. A coding system employing the proposed SD DADWT 
is designed, and preliminary experimental results are provided.  

The remainder of the paper is organized as follows. Section 2 
presents the principles of direction-adaptive discrete wavelet 
transform. Section 3 presents the Edgmentation algorithm 
employed for image segmentation. In Section 4 we explain the 
proposed codec architecture. The experimental results are given 
and discussed in Section 5. Finally, Section 6 concludes our work. 
 

2. DIRECTION-ADAPTIVE DISCRETE WAVELET 
TRANSFORM (DADWT) 

 
The DADWT proposed in [5] is a critically-sampled discrete 
wavelet transform implemented with lifting [2], in which the 
lifting operations are adapted to the local geometry in the image. 
Basically, in the approach of [5] the image is split into blocks, and 
within each block a direction-adaptive discrete wavelet transform 
is performed by employing a “directional” lifting scheme.  

 

Following the notations in [5], let X  denote an image defined on 
an orthogonal sampling-grid  composed of 4 different sub-grids 

pq , with {( , ) | mod 2 , mod 2 }pq m n m p n q . 
Similar to the classical DWT, the input signal X  is firstly 
decomposed into even ( 0 0 0 0 00 01{ | }X l l ) and odd 
( 1 1 1 1 10 11{ | }X l l ) rows respectively. Then, the 
lifting scheme predicts the even rows from the odd ones, resulting 
into the detail signal 1 1 1{ [ ], }H H l l . This signal is used to 
update the even rows in order to produce the approximation signal 

0 0 0{ [ ], }L L l l . The 1D vertical lifting steps are thus: 
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where G  is a scaling factor and ( ), ( )P U are predict and update 
functions respectively, taking as input sets of samples in 0X  and 
H  respectively, and producing a scalar output.  
A subsequent lifting step performed on columns decomposes L  
into the subbands LL  and LH  defined on the grids 00  and 

01  respectively, and H  into the subbands HL  and HH  
defined on 10  and 11 , respectively.  
The DADWT employs cN  candidate directional predictors, 

1, ( )i
X lP  for each block. The predict and update functions are 

defined as [5]: 
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In the equations above 0 1ci N  is the direction index, 
and iv  is the direction candidate; the iv s are defined such that all 

1 (2 1) il k v  map to an even 0l  index, for any 1,l k  ( 1l  being 
odd). In the considered DADWT instantiation, 3p uK K , while 

,p u
kkc c  are the predict- and update-filter coefficients respectively, 

as specified in [5]. The second equation states that whenever an 
image sample 1X l  is predicted by 0[ ]p

kc X l , the corresponding 
0L l  is updated by 1[ ]u

kc H l . 
For compression purposes, it is desirable to select for each 

block the predictor for which the magnitude of the residual 1[ ]H l  is 
minimized. Thus, for every image block, the optimum iv  is chosen 
as the direction that minimizes the prediction error 1[ ]H l  within the 
block. Once a prediction direction is chosen, the “flow” vectors iv  
are reverted and used in the update step, as given above. 

For a multi-level wavelet transform, the vertical and 
horizontal directional lifting steps are repeated successively for 
every LL . The inverse transform reconstructs the original signal 
performing the same steps in reverse order. 

One notes that in order to produce an integer version of (1), 
for the particular DADWT instantiation used in this paper, we can 
multiply by G  both the low- and band-pass terms in (1) and 
employ the integer-part operation as follows: 
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For the employed interpolating transforms [5] one has 2G , 
implying that the coefficients produced by (2) are indeed integers.  
 

3. EDGMENTATION 
 
In the proposed SD DADWT any type of multiresolution 
segmentation algorithm can be practically employed. Basically, the 
segmentation tool only drives the directional lifting process at 
every resolution level. Hence, the choice of the employed 
segmentation tool and/or segmentation criteria can be made 
according to the scope of the targeted image analysis application.  

In our SD DADWT implementation, our previously 
developed Edgmentation algorithm [6]-[8] is employed. 
Edgmentation can be considered a modified split-and-merge 
algorithm, where the splitting step is performed given the edge 
information in the image and the merging step occurs according to 
the grey-value characteristics of the segment.  

3.1. Splitting procedure 
 
The splitting step of the Edgmentation algorithm involves a 
“segment and refine” method. The image partitioning is 
coordinated by the edge information, as described below. 

First, the local maxima in the reverse of the edge image are 
considered as roots. Every root is labeled with the grey value of 
the corresponding pixel from the original image. Afterwards, 
pixels are linked to one another along the steepest path in the 
reverse edge image, until every pixel is linked to a root [6]. 
In the refinement procedure, the segments are checked for their 
grey value homogeneity. The employed measure of homogeneity 
is the absolute difference between the minimum and the maximum 
of the grey values existing in a region [7], [8]. The segments that 
do not satisfy the homogeneity criteria are further segmented.  

After the splitting step is performed, a large number of 
segments are produced, as shown in the example of Fig.2 (a). 
Many of these segments are meaningless and some of them 
correspond to parts of the same object. Further on, a merging step 
is necessary in order to solve this drawback.  
 
3.2. Merging procedure 
 
Two neighboring regions are merged if the absolute value of a cost 
calculated between these regions is less than an imposed threshold 

mT  [8]: 

ij mC T , 

where ijC  is a cost function expressing the differences between the 
pixels inside adjacent regions i and j : 

ij ij ij ij ijC GS GR SL SM , 

where: 

ij i jGS  

is the grey-level similarity measure between regions i  and j , and 
i  is the mean grey value in region i ; 

_ _ij ij ijGR gradient shared contour length  

is a measure of the strength of the edge separating the regions i  
and j ; 

min( , ) _ _ij i j ijSL n n shared contour length  

controls the size of the produced regions. ,i jn n  are the sizes of 
regions i  and j  respectively; 

_ _ _ _ij ijSM shared contour length no of vertices  

represents the contour-coding “easiness” factor [8], and 
_ _no of vertices  indicates the number of vertices needed to 

approximate the contour using a polygon approximation. 
An example of the result of the merging step is given in Fig.2 (b). 
 

4. SEGMENTATION-DRIVEN DADWT 
 
The proposed segmentation-driven DADWT and the design of a 
scalable image coding system that makes use of this representation 
are given in the following.  
The block diagram of our system is depicted in Figure 3. First, a 
label image is produced by segmenting the input image using the 
previously described Edgmentation algorithm.   
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(a) Over-segmented image (b) After merging (c) Approximated contours 

Figure 1. Edgmentation results for “Barbara”, (a) after the splitting step, and (b) after merging. (c) Linear approximation of the contours. 
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Figure 3. Block diagram of the proposed SD DADWT and scalable codec architecture making use of this representation. 

 
The label image is the result of a splitting and merging step 
controlled by two parameters, one specifying the final number of 
produced regions, and a second one specifying the smallest accepted 
size for any segment. The label image is further transformed into a 
contour map 0C , representing the contours of the regions in the 
segmentation produced at the original resolution level (level 0).  

Further on, the contours in 0C  are simplified by keeping only 
8-connected pixel contours, and then approximated by polygons 
[8], in order to reduce the rate needed to represent 0C . This means 
that the contours are approximated by sets of points (vertices) that 
are connected by straight lines [8]. The approximation is produced 
by ensuring that the distance between the original contours and the 
approximated ones does not exceed a pre-defined threshold. An 
example of such an approximation is given in Fig. 2(c). We note 
that in our approach we use linear approximations, but higher 
order approximations (e.g. splines) are also feasible.  

The result of the approximation technique is a contour image 
0C . Based on 0C  one generates a label image 0L  indicating the 

corresponding predictors (and updaters) to be used for the 
DADWT of level 1. In our implementation we consider 11cN  
direction candidates [5] for the vertical lifting step, as well as for 
the horizontal one. The predictors are chosen segment-wise. That 
is, for each segment in 0L , we perform an exhaustive search 
among all possible directions and choose the direction that 
minimizes the mean square error (MSE) between the original 
segment and the predicted one. Later developments will include 
the minimization of a functional accounting both for the distortion 
and rate needed to encode the predictors, similar to [5]. 

As it concerns the proposed coding system, the predictors are 
encoded using a first-order entropy coder. The contour image 0C  

is encoded using a high-order arithmetic coder. The information 
sent to the contour coder is the starting point’s coordinates for each 
contour, and the coordinate differences between every two 
consecutive vertices. Triple points are used [8] in order to signal 
the fact that a point could be part of more than one contour.  

The subbands obtained by transforming the initial image, are 
encoded using the QT-L coder of [9], except the LL subband, 
which is recursively decomposed and coded, until the required 
number of decomposition levels is attained. 

We observe that, in order to reduce the rate needed to encode 
the contour maps at all the resolution levels, it is possible to apply 
Edgmentation only at the highest resolution level (level 0), and 
reuse the segmentation results at the lower resolution levels, by an 
appropriate downsampling of the label image 0L .  

Additionally, instead of approximating the contours in 0C  by 
using polygons, an alternative solution is to employ a scalable 
contour coding technique. In this way, we can losslessly decode 

0C , if needed, but also extract 0C  as a lower-rate version of 0C . 
Designing such a scalable contour codec, and studying the 
optimum rate allocation between the contour and subband codecs 
are left as topics of future investigation.   
 

5. EXPERIMENTAL RESULTS 
 
This section reports preliminary experimental results obtained with 
a scalable coding system employing the proposed SD DADWT 
and compares them against those obtained using (i) the classical 
lifting-based implementation of the DWT [2], and (ii) the 
conventional block-based DADWT of [5]. All systems employ the 
same scalable subband codec, which is the QT-L codec of [9].  
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Coding rate Conventional  
DADWT  

Proposed 
codec, 
without 
contour 
coding 

Proposed 
codec, 
with 

contour 
coding 

Classical 
lifting 

0.125 bpp 26,27 dB 26,39 dB 25,19 dB 23,57 dB 
0.25 bpp 29,32 dB 29,67 dB 28,88 dB 28,08 dB 

0.3 bpp 30,40 dB 30,75 dB 29,79 dB 28,96 dB 
1 bpp 38,17 dB 38,47 dB 38,16 dB 37,58 dB 
2 bpp 43,70 dB 43,80 dB 43,66 dB 43,58 dB 

Table 1. PSNR values for test image Barbara, 4 resolution levels.  

The results are reported in Table 1. In these experiments the 
DADWT is applied only for the first decomposition level, for 
lower levels the classical lifting transform being used. The 
experimental results demonstrate significant improvements over 
the DWT employing the classical lifting [2], similar to those 
observed in the case of DADWT [5]. Furthermore, the experiments 
show that PSNR improvements of up to 0.35 dB over the block-
based DADWT [5] are achieved with SD DADWT, if we do not 
consider the cost for coding the contour image 0C . This indicates 
that adapting the bases both spatially and in terms of orientation 
might be a better option than adapting them only in terms of 
orientation. This also shows that SD DADWT is a better option 
than DADWT in applications that require performing both image 
segmentation tasks and compression.  
Accounting for the contour coding costs affects the compression 
performance, particularly at low rates. However, the visual quality 
in the reconstructed image (Fig. 5) is still not affected. On the 
contrary, despite of the PSNR differences, some regions in the 
reconstructed image obtained via a segmentation-driven DADWT 
have a better visual quality that those obtained from the block-
based DADWT (notice the highlighted regions in Fig. 5). 

One can safely conclude that the proposed coding approach 
retains the advantage of encoding a multiresolution image 
segmentation, having potential applications in object-based coding 
and image analysis, and in the same time preserves significant 
performance advantages over an equivalent system employing the 
classical DWT. 
 

6. CONCLUSIONS 
 
In this paper we propose a multi-resolution image representation 
based on DADWT and segmentation of the image in non-
rectangular regions. A scalable coding system employing the 
proposed SD DADWT is designed, and promising preliminary 
experimental results are provided.  

It is important to observe that in contrast to the segmented 
image coding (SIC) approaches developed in the past [7], [8], 
synthesizing the image as a union of adjacent segments, the 
proposed SD DADWT is a global transform, making use of 
segmentation only in order to drive a global transformation 
process. This ensures that a coding system based on SD DADWT 
does not generate disturbing visual artefacts around the segment 
borders, as those observed in SIC coding at very low rates [7], [8].  

One concludes also that the proposed SD DADWT offers a 
multiresolution representation of the geometric features in the 
image, via a multiresolution image segmentation, and in the same 
time provides a sparse image representation via directional lifting. 
These features make it beneficial in applications that require 
performing both image analysis and compression.  

 
a) Block-based DADWT 

 
b) Proposed SD DADWT 

Figure 5. Encoded image at 0.3 bpp. The ellipses highlight the visual 
differences between (a) block-based and (b) SD DADWT.  
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