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ABSTRACT 

A spatio-temporal autoregressive model is proposed in this 
paper to address the problem of frame rate up conversion. 
Every pixel in a skipped frame is generated as a linear 
combination of pixel values from forward and backward 
reference frames. At the beginning of the presented scheme, 
the coarse model parameters are computed according to the 
given initial pixel values for skipped frames. Then the 
coarse parameters are refined by an iteration process, during 
which we also interpolate the original low rate frames by the 
two closest generated skipped frames to derive more 
accurate parameters. Experimental results verify that the 
proposed algorithm significantly improves both the 
subjective and objective quality of the interpolated frames. 
 
Index Terms—Frame rate up conversion, Spatio-temporal 
autoregressive, Linear combination

1. INTRODUCTION 
 
Frame rate up conversion (FRUC), which is also referred as 
picture rate conversion or temporal frame interpolation in 
the literature, is the conversion from lower frame rates to 
higher ones. Besides the necessity for conversion among 
various display formats with different frame rates [1], 
FRUC can also be used in low bit rate video coding [2]. 
With low bandwidth limits, one can send the full frame rate 
video at the cost of introducing annoying artifacts. 
Alternatively, the frame rate may be reduced by half so that 
each frame has better quality. In the latter case, a recovery 
mechanism utilizing FRUC is necessary at the decoder to 
display the video at a full frame rate. 

Generally, FRUC can be divided into two categories. The 
first category, such as frame repetition and linear 
interpolation (LI), interpolates the skipped frame along 
temporal axis without taking the object motion into account. 
However, these algorithms produce “jerkiness” into the 
motion portrayal and blurring on object boundaries, 
respectively [3]. The second category interpolates the 
skipped frame along motion trajectory exploiting motion 
information between successive frames [4], which are also 

referred as motion-compensated interpolation (MCI). Given 
true and accurate motion vectors, MCI outperforms the first 
strategy. The interpolator that predicts the skipped frame can 
be either linear (Haar filter), or nonlinear (median operation 
[5]). Yet, as one interpolates the additional frames to 
increase the frame rate of the video, local artifacts are 
introduced due to the incorrect estimation of motion vectors. 
For the MCI case, motion may look jerky, not smooth or 
very choppy. To get higher visual quality frames, we need to 
use true motion vector fields, whereas block matching does 
poorly with this, especially for the regions across object 
boundaries and when the moving object is too small. 
Although block artifacts can be reduced by MCI combined 
with overlapped block motion compensation (OBMC) [6], 
which is also referred as MCI-OBMC, sometimes the 
generated frames still look unpleasant. What’s more, 
traditional FRUC algorithm can’t cope with discontinuity in 
the velocity plane. 

In order to overcome the shortcomings of MCI as well as 
MCI-OBMC and achieve higher visual quality frames, we 
propose a STAR-FRUC scheme in this paper. STAR was 
proposed for forecasting both synthetic and real-life data 
using a short observation history in [7]. In the proposed 
algorithm, STAR is introduced to approximate the skipped 
frames by suitable interpolation using forward and 
backward reference frames. There are two main 
contributions in this work. Firstly, in contrast to previous 
FRUC algorithms, here a generated pixel depends on the 
values from all neighboring locations on a rectangular lattice 
within a pre-specified distance in neighboring frames. 
Secondly, the STAR parameters are derived by a joint 
optimization process. 
   In the rest of the paper, we first present the proposed 
STAR-FRUC in detail in Section 2. Then the effectiveness 
of the proposed algorithm is demonstrated by experimental 
results in Section 3. Finally, the paper is concluded in 
Section 4. 
 
2. SPATIO-TEMPORAL AUTOREGRESSIVE MODEL  
 
A STAR model is defined on a uniform three-dimensional 
cubic grid determined by sampling distances s in both 
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spatial directions and t along temporal axis. Model 
samples are taken at time instances k  where 
k {1,2,…}and  is a time sampling interval for the up 
converted frame rate. 
  For each skipped frame in time instance t, the interpolated 
pixel value ˆ ( , )tp m n at spatial location (m, n) is generated 
as a linear combination of pixel values taken from the 
closest forward and backward low rate reference frames at 
the same location and its spatial neighbors. The spatial 
neighborhood is specified as a (2L+1) × (2L+1) square 
bounded by locations (m ± L, n ± L). Parameter L will be 
referred as spatial order of a STAR model (for L=2, the 
STAR model is illustrated in Fig. 1).  

 

 t-1 t t+1  
 

Fig. 1. STAR model on a uniform grid with spatial order 
L=2 
We express the value of ˆ ( , )tp m n  as  
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where 1( , )t k l and 1( , )t k l denote the model coefficients 
for pixel ˆ ( , )tp m n  in the forward and backward reference 
frames, respectively.  

Based on the assumption that current block is undergoing 
translational movement, MCI algorithm gives each block a 
unique motion vector. Nevertheless, this assumption does 
not hold true in object boundaries or complex motion 
regions. Fortunately, STAR can tackle these problems quite 
well, as it can adjust its weights for different areas to make 
the interpolated frames more accurate and smooth. 
Furthermore, OBMC can be seen as a specific case of STAR. 
That is because if we set certain parameters of STAR to be 
specific values, while other parameters are set to be zero, 
STAR equals to OBMC. It can be seen that STAR parameter 
matrices forward and backward play crucial roles for the 
values of interpolated pixels in the generated frames, where 

1{ ( , )}forward t k l and 1{ ( , )}backward t k l , respectively, 
and k, l {-L,-L+1,…, L}. Details of parameter estimation 
will be described in the following subsection. 
 
2.1 Parameter estimation 
According to the characteristic of pixel-wise stationary, 
which means the model parameters change slowly, we 

assume the STAR model parameters remain the same in the 
nearby frames within a region.  In the proposed scheme, 
we divide each frame into non-overlapped 16×16 
macroblocks (MB) and process the parameter estimation in 
MB-wise. Although the available data are only the 
reconstructed low rate frames, more accurate STAR 
parameters can be derived by interpolating the skipped 
frames using reconstructed low rate frames as well as 
interpolating the reconstructed frames using generated 
frames. The process is shown in Fig. 2. 
 

t-2 t-1 t t+1 t+2

 
Fig. 2. Interpolation of the skipped frames and the 
interpolation of the reconstructed frames by generated 
frames 
 

As is depicted in Fig. 2, we set every 5 successive MBs 
(including reconstructed and generated MBs) as a group of 
MBs (GOMB) and assume STAR parameters remain the 
same in each GOMB. In Fig. 2, the frames filled with solid 
circles are reconstructed frames and the frames filled with 
hollow circles are generated ones. Skipped frames t-1 and 
t+1 are interpolated by their closest forward and backward 
reference frames at first (as shown in the top of Fig. 2), and 
then reconstructed frame t is interpolated by the nearest 
generated frames (as shown in the bottom of Fig. 2). 
Interpolation of frames t-1 and t+1 utilizes reconstructed 
low rate frame t, rather than the frame interpolated by 
frames t-1 and t+1. The aim of interpolating reconstructed 
frame t is to derive more accurate STAR parameters. Pixel 
values of the skipped frames are interpolated according to 
Eq. (2).  
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Here, j is set to be 1 and 2 respectively, superscript i 
represents ith iteration process, subindex t represents time 
instance. ˆ ( , )i

tp m n  represents the interpolated pixel value in 
the ith iteration. ( , )tp m n  represents the reconstructed low 
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frame rate pixel value located at (m, n). ( , )i
forward k l and 

( , )i
backward u v , where k,l and u,v

represent the forward and backward 
STAR weighting parameters, respectively. Reconstructed 
frame t is interpolated using the generated frames t-1 and
t+1 as Eq. (3) 
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Combining with Eq. (2), and Eq. (3), STAR parameters 
forward  and backward  in the ith iteration are computed 

according to Eq. (4). 
21
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(4)

The proposed parameter estimation algorithm is 
implemented as follows: 

Step 1: Set iteration times i to be 0. For each (m, 
n), 0

1ˆ ( , )tp m n  and 0
1ˆ ( , )tp m n are set to be the initial values 

for the skipped frames t-1 and t+1. For instance, MCI results 
could be set to be the initial values. 

Step 2:  Combining Eq. (2) to Eq. (4), coarse STAR 
parameters are computed. 

Step 3: i = i+1. Compute 1ˆ ( , )i
tp m n , 1ˆ ( , )i

tp m n and 
ˆ ( , )i

tp m n according to Eq. (2), and Eq. (3), respectively.  
Step 4: Compute STAR parameters for the ith iteration 

according to Eq. (4), and then compute the distortion 
according to the right part of Eq. (4). Then compute the 
difference of the distortion between the current and previous 
iteration. 

Step 5: Repeat Step 3 and Step 4, until the difference of 
distortion in Step 4 is below a threshold or the maximum 
iteration time is reached.  

 
2.2 Parameter selection 
 
In order to derive more accurate and robust STAR 
parameters, the GOMB window moves 2 frames backward 
after one skipped frame is interpolated. Consequently, 
another problem arises, that is one frame may belong to two 
GOMBs, as shown in Fig. 3, where the frames indicated by 
dotted lines are the skipped frames, whereas the others are 
the original ones. From Fig. 3, we can see that the skipped 
frame t+1 belongs to the nth GOMB, while at the same time 
it also belongs to the n+1 th GOMB. 

nth GOMB

n+1th GOMB

t-2 t-1

t

t+1 t+2

t+1 t+2 t+3 t+4

t

 
Fig. 3 The relation between each frame and its GOMB 

 
For each of the two succesive GOMBs to which frame t+1 
belongs, we introduce 
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where ˆ ( , )optimal
tp m n means the interpolated pixel value 

when STAR parameters are converged or the maximum 
iteration time is reached, and _ˆ ( , )optimal prev

tp m n is the 
interpolated pixel value in the iteration before STAR 
parameters are converged or the maximum iteration time is 
reached. Between the nth and the n+1th GOMB, we choose 
the parameters whose distortion is smaller to interpolate the 
skipped frame t. For instance, if the distortion within the nth 
GOMB is smaller than that in the n+1th GOMB, we use the 
parameters of the nth GOMB; otherwise, we choose the 
parameters of the n+1th GOMB. 
 

3. EXPERIMENTAL RESULTS 

In order to verify the validity of the proposed algorithm, 
various 15 frames/s sequences reconstructed from an H.264 
decoder are evaluated by STAR-FRUC to generate 30 
frames/s sequences. The sequences are encoded as IBPBP 
structure and the QP is set to be 30. Every other frame is 
skipped during the encoding and is interpolated using 
STAR-FRUC. In the experiment, L is set to be 3 and the 
maximum number of iterations is set to be 5. The proposed 
method is compared with LI, MCI, and MCI-OBMC. For 
the MCI case, full search block matching algorithm for 
motion estimation (ME) is applied. For each skipped frame, 
ME is performed in not only the forward but also the 
backward reference frames, and the motion vectors leading 
to smaller distortions are used to perform MCI. The MCI 
results are then used as initial values for STAR-FRUC. Peak 
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signal noise ratios (PSNR) values, which are computed 
compared to the corresponding original frames, are averaged 
over 50 skipped frames and they are given in Table 1. 

Table 1. Average PSNRs (dB) of interpolated frames  
generated by different algorithms 
 

Sequence LI MCI MCI- 
OBMC 

STAR-F
RUC 

Mobile (QCIF) 29.98 31.03 31.08 31.82 
Paris (CIF) 29.04 31.12 31.39 31.67 

Tempete (CIF) 28.86 29.45 29.55 29.95 
Foreman (CIF) 29.96 32.62 32.79 33.04 

Spincalendar (HD) 26.34 28.88 29.28 29.70 
 
The first column represents the PSNR value of LI, where 

pixels in skipped frames are computed by simply averaging 
the collocated pixel values of the forward and backward 
reference frames. The subsequent columns are MCI, 
MCI-OBMC, and the proposed STAR-FRUC, respectively. 
From Table 1, we can see that STAR-FRUC outperforms LI, 
MCI, and MCI-OBMC for the entire test sequences. MCI 
outperforms LI greatly, due to the adoption of motion 
compensation. MCI-OBMC achieves superior performance 
compared to MCI. Nevertheless, the performance 
enhancement is rather poor, especially for Mobile which 
gains only 0.05 dB compared to MCI. STAR-FRUC, as a 
more general case of MCI-OBMC, achieves the highest 
performance.  

Fig. 4 depicts the visual comparison of the 28th skipped 
frame in Foreman. Using LI without considering motion 
between frames results in the worst quality. MCI, exploiting 
motion displacement existed in different frames, achieves 
better visual quality compared to LI. However there are 
significant artifacts in the mouth area. MCI-OBMC achieves 
higher PSNR values compared to MCI. However, there are 
still some artifacts in the mouth area. The proposed STAR 
algorithm provides the best visual quality and highest PSNR 
values among the four FRUC methods, due to the full 
exploitation of similarities within a specified spatial and 
temporal neighborhood. 
 

4. CONCLUSIONS 

In this paper, a novel STAR-FRUC scheme is proposed for 
frame rate up conversion. It exploits the spatio-temporal 
interactions among pixel values within successive video 
frames. The most remarkable difference between traditional 
FRUC and the proposed STAR-FRUC is that each pixel is 
interpolated as a linear combination of the pixels within its 
pre-specified spatial and temporal neighborhood.   

   
( )                                    ( ) 

  
( ) ( )

Fig. 4: Visual comparison of FRUC methods: ( ) 
LI-29.957dB, ( ) MCI-32.619dB, ( ) 
MCI-OBMC-32.786dB, ( ) STAR-33.04dB 
 

Evaluation of the proposed method is carried on 
sequences encoded and decoded by H.264. Although the 
complexity of STAR-FRUC is comparatively higher than 
other FRUC algorithms, the experimental results confirm 
that the proposed STAR-FRUC outperforms LI, MCI and 
MCI-OBMC algorithms for all the tested sequences both 
subjectively and objectively. Future works may include 
some optimization techniques to decrease the complexity of 
the proposed STAR-FRUC.     
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