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ABSTRACT
We propose an adaptive wavelet transform that results in

fewer large detail coefficients while preserving image con-
tours in the approximation subband. The transform is con-
structed with a three-step nonlinear lifting scheme: a fixed
prediction followed by a space-varying update and a non-
additive prediction. The interest of the proposed scheme is
demonstrated for nearly lossless compression.

Index Terms— Image coding, wavelet transforms, adap-
tive signal processing, nonlinear system

1. INTRODUCTION

Wavelet-based image compression algorithms are becoming
extremely popular, and they have been adopted into the still-
image coding standard JPEG2000. Such compression algo-
rithms exploit the ability of wavelet representations to effi-
ciently decorrelate and approximate data with few non-zero
wavelet coefficients. However, classical linear wavelets can-
not efficiently model higher order singularities, like edges or
contours in images. This has motivated various researchers
to look for new multiresolution decompositions that can take
into account the characteristics of the input signal or image.
To a certain extent, this can be achieved by decompositions
with respect to fixed but tailor-made bases [1, 2, 3, 4], by
nonlinear wavelets [5, 6, 7] or by adaptive subband struc-
tures [8, 9, 10, 11, 12, 13].
Some of these decompositions exploit the flexibility of

the lifting scheme [14] to introduce nonlinearities or different
kinds of adaptivity. In [11, 12, 13], we presented a new class
of adaptive wavelet decompositions that can capture the di-
rectional nature of picture information. This method exploits
the properties of seminorms to build lifting structures able to
choose between different update filters.
In this paper, we consider a different approach. We build

our adaptive wavelet transform by means of a three-step non-
linear lifting scheme: a fixed prediction followed by a space-
varying update and a non-additive prediction.
The paper is organized as follows. Section 2 reviews the

lifting construction. Section 3 presents the three-step nonlin-
ear lifting scheme and its application to one-dimensional sig-

nals. Section 4 gives some examples and simulation results.
Finally, concluding remarks are made in Section 5.

2. THE LIFTING SCHEME

The lifting scheme is a very general and highly flexible tool
for building new wavelet decompositions from existing ones.
Although originally they were developed to design wavelets
on complex geometrical surfaces, they are often used as an
alternate implementation of classical wavelets. Furthermore,
the lifting scheme offers the possibility to replace linear filters
by nonlinear ones and to construct adaptive wavelet decom-
positions.
The main ingredients of the lifting scheme, as illustrated

in Fig. 1, are an existing wavelet transform WT , a prediction
operator P and an update operator U . The input signal x0 is

x

��

�������	+ �� x′

x0
�� WT P

��

U

��

y �������	− ��

��

y′

Fig. 1. Classical lifting scheme

first split into an approximation signal x and a detail signal
y by a given wavelet transform WT (which may be a sim-
ple polyphase decomposition, also called ‘lazy wavelet trans-
form’). The prediction operator P acting on x is used to mod-
ify y, yielding a new detail signal y′ = y−P (x). In practice,
the prediction operator P is chosen such that P (x) is an esti-
mate of y and hence the new signal y′ is ‘smaller’ than y. Sub-
sequently, the update operator U acting on y′ is used to mod-
ify x, resulting in an approximation signal x′ = x + U(y′).
Generally, the update operator is chosen in such a way that
the resulting signal x′ satisfies a certain constraint such as
preserving the average of the input x0.
A general lifting scheme may comprise any sequence of

update and prediction lifting steps. In practice, these lifting
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steps are chosen in such a way that the resulting decompo-
sition is an ‘improvement’ of the original one. For example,
the lifted wavelet may have more vanishing moments than the
original one, or it may be better able to decorrelate the signals
within a given class etc.
The original signal is reconstructed by reversing the lift-

ing steps and applying the inverse of WT . Hence, perfect
reconstruction is guaranteed by the intrinsic structure of this
scheme and does not require any particular assumptions on
the lifting operators P and U , or about the underlying sam-
pling grid. Moreover, the operators ‘+’ and ‘−’ used in the
above expressions can be replaced by any pair of invertible
operators. With the lifting scheme, it becomes possible to
build ‘any wavelet you like’ on ‘every geometrical structure
you are interested in’. In this paper, we will exploit this fact
by adapting both update and prediction operators to the local
properties of the signal.

3. A THREE-STEP NONLINEAR LIFTING SCHEME

Consider the lifting scheme illustrated in Fig. 2.
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Fig. 2. Three-stage lifting scheme

Here, WT is the lazy wavelet transform:x(n) = x0(2n),
y(n) = x0(2n − 1), and H , G are thresholding operators
defined for all u ∈ IR as

H(u) =

{
1

2
u if |u| < T

αT

2
sign (u) otherwise,

(1)

G(u) =

{
u if |u| > T ′

α′T ′ otherwise,
(2)

where T, T ′ are positive threshold values and α, α′ ∈ {0, 1}
constants which determine the kind of thresholding (hard or
soft-thresholding) applied.
The approximation signal x′ is given by

x′(n) = x(n) + H(d(n)) , (3)

where d(n) = y(n) − x(n) is a first detail signal. The rea-
soning behind this procedure is the following. In the regions
where the underlying signal x0 is locally smooth, the differ-
ence signal d (which can be seen as a local gradient of x0)

will be small and the approximation signal x′ will be com-
puted as a linear combination of the polyphase components
x and y. On the contrary, near discontinuities the difference
signal d takes large values and hence x′ is slightly (or not at
all) modified in order to prevent smoothing the edges.
As shown in Fig. 2, the detail signal y′ is obtained through

a non-additive prediction lifting step. Note that the standard
subtraction ‘−’ has been replaced by a nonlinear operator ‘�’
defined as

t� u =
t

β + |u|
, β ≥ 1 ,

for all t, u ∈ IR. Thus, the detail signal y′ is given by

y′(n) =
d(n)

β + |G(v(n))|
, (4)

where v(n) = x′(n−1)−x′(n). Here, v(n) can be viewed as
an estimation of d(n). If this estimation is big, we are scaling
d by v, so we are kind of compressing the dynamic range of d,
leading to a final detail signal close to zero. If this estimation
is small, the final detail will be equal to d.

A one-dimensional toy example
Let us consider the case where α = α′ = 0 (i.e. hard-
thresholding) and β = 1. From (1)-(4) we get

x′(n) =

⎧⎨
⎩

x(n) + y(n)

2
if |y(n)− x(n)| < T

x(n) otherwise,
(5)

y′(n) =

⎧⎨
⎩

y(n)− x(n) if |x′(n− 1)− x′(n)| ≤ T ′

y(n)− x(n)

1 + |x′(n− 1)− x′(n)|
otherwise.

(6)

One can see that the adaptive scheme performs as the Haar
wavelet except for those locations where the gradient is large.
If |y(n) − x(n)| ≥ T , the scheme ‘recognizes’ that there
is an edge and does not apply any smoothing in the update
step. Since the resulting approximation signal x′ retains the
discontinuities, large values |x′(n − 1) − x′(n)| are likely to
indicate large |y(n)−x(n)|. In such cases, the scheme scales
the detail signal, hence maintaining its magnitude small.
We apply this scheme to the one-dimensional signal shown

in the left of Fig. 3. It is a piecewise regular signal of 512 sam-
ples with values between 0 and 1. We choose T = 2T ′ = 0.2
and perform a two-level decomposition. The resulting ap-
proximation and detail signals are compared to those obtained
with the linear Haar and 5/3 wavelet decompositions. Unlike
the linear schemes, the considered decomposition does not
smooth the discontinuities in the approximation signal and
avoids the oscillation effects. In addition, it results in fewer
and smaller non-zero details.
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Fig. 3. From left to right: original signal and nonlinear, Haar and 5/3 wavelet decomposition. The upper rows show the
approximation signals and the middle and bottom rows the detail signal.

4. SIMULATIONS

In this section, image nearly lossless compression examples
using the proposed adaptive lifting scheme are presented. Here,
the extension of the adaptive scheme to the two-dimensional
case is achieved by applying the one-dimensional filters to
the image data in a separable way. The images are first fil-
tered vertically and then horizontally, resulting in a four-band
decomposition.
In the following experiment, we fix α = α′ = 1, T =

2T ′ = 30 and β = 1.
We assess the coding efficiency of our scheme by attach-

ing a nearly lossless coder and computing the actual bitrate.
We use the embedded image coding algorithm EZBC pro-
posed in [15]. The same coder is attached to the Haar, 5/3
and 9/7 wavelet schemes. For a fair comparison, the detail
bands of the linear schemes are normalized by 1+T ′. Table 1
shows the average bitrate1 for 4 levels of decomposition when
applied to some well-known natural images. In all cases, the
nonlinear decomposition achieves lower bitrates.
As an illustration, Fig. 4 and Fig. 5 show the two-level

multiresolution decomposition of two test images. Results
are displayed for the nonlinear (left) and 5/3 wavelet (right)
schemes. The original synthetic image and the approxima-
tion images scaled to the original size are shown in Fig. 6.
For displaying purposes, the details of each detail band have
been independently scaled with a range three standard devia-
tion below and above zero. One can observe that the adaptive
scheme avoids blurring the edges in the approximation while
obtaining detail images with less detail information and with-
out oscillations around edges.

5. CONCLUSIONS

We have presented a three-step lifting scheme with two non-
linear steps, able to better preserve the sharp transitions in the
approximation, while reducing both magnitude and oscilla-

1The PSNR obtained in all cases was above 60 dB.

(a) (b)

Fig. 4. Multiresolution decompositions of Lena image: (a) Nonlin-
ear and (b) 5/3 wavelet schemes.

(a) (b)

Fig. 5. Multiresolution decompositions of a synthetic image: (a)
Nonlinear and (b) 5/3 wavelet schemes.

Cameraman Barbara Lenna Peppers
Haar 0.533 0.576 0.288 0.262
5/3 0.514 0.457 0.208 0.179
9/7 0.551 0.498 0.262 0.225
Nonlinear 0.324 0.396 0.195 0.144

Table 1. Nearly lossless coding rates (in bpp) for 4 levels of de-
composition.
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(a)

(b) (c)

Fig. 6. (a) Original and approximation image after a two-level de-
composition: (b) Nonlinear and (c) 5/3 wavelet schemes.

tions in the detail coefficients. Thanks to these properties, we
have proven the interest of such adaptive decompositions for
image approximation and lossless compression. Future work
aims at extending this framework for lossy image and video
compression.
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[10] J. Solé and P. Salembier, “Adaptive generalized prediction for
lifting schemes,” in IEEE International Conference on Acous-
tics, Speech, and Signal Processing, March 2005, vol. 2, pp.
205–208.

[11] G. Piella, B. Pesquet-Popescu, and H. J. A. M. Heijmans,
“Adaptive update lifting with a decision rule based on deriva-
tive filters,” IEEE Signal Processing Letters, vol. 9, no. 10, pp.
329–332, October 2002.

[12] H. J. A. M. Heijmans, B. Pesquet-Popescu, and G. Piella,
“Building nonredundant adaptive wavelets by update lifting,”
Applied and Computational Harmonic Analysis, vol. 18, no. 3,
pp. 252–281, May 2005.

[13] H. J. A. M. Heijmans G. Piella, B. Pesquet-Popescu and
G. Pau, “Combining seminorms in adaptive lifting schemes
and applications to image analysis and compression,” Journal
of Mathematical Imaging and Vision, vol. 25, no. 2, pp. 203–
226, September 2006.

[14] W. Sweldens, “The lifting scheme: A new philosophy in
biorthogonal wavelet constructions,” in Wavelet Applications
in Signal and Image Processing III, San Diego, California, July
12-14 1995, Proceedings of SPIE, vol. 2569, pp. 68–79.

[15] S. Hsiang and J. Woods, “Embedded image coding using ze-
roblocks of subband/wavelet coefficients and context model-
ing,” in Proceedings of the IEEE International Symposium on
Circuits and Systems, Geneva, Switzerland, May 28-31, 2000,
pp. 662–664.

I - 456


