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ABSTRACT
Finding the sparsest approximation of an image as a sum of

basis functions drawn from a redundant dictionary is an NP-

hard problem. In the case of a dictionary whose elements

form an overcomplete basis, a recently developed method,

based on alternating thresholding and projection operations,

provides an appealing approximate solution. When applied

to images, this method produces sparser results and requires

less computation than current alternative methods. Motivated

by recent developments in statistical image modeling, we de-

velop an enhancement of this method based on a locally adap-

tive threshold operation, and demonstrate that the enhanced

algorithm is capable of finding sparser approximations with

a decrease in computational complexity.

Index Terms— Sparse image approximation, overcomplete

representation, redundant dictionary, image statistics.

1. INTRODUCTION

Many problems in image processing can be formulated in

terms of approximation with a relatively small set of basis

functions. Having such a compact representation of a sig-

nal can lead to better signal modeling, which in turn leads

to improvements in a variety of applications such as coding,

denoising, source separation, classification or segmentation.

The classical approach to sparse approximation is based on

statistical properties of the ensemble. Specifically, principal

components analysis provides a linear basis sorted accord-

ing to variance, and independent component analysis methods

have been developed to exploit higher-order statistics [1].

More recently, a variety of authors have begun to explore the

idea of signal-specific sparse approximation. Instead of try-

ing to learn a basis that efficiently approximates a class of

signals (either probabilistic or deterministic), these methods

try to find the sparsest approximation of a single image given
a large (typically redundant) set of basis functions. The dic-

tionary of functions may include functions that capture some

specific geometric properties of images, such as orientation

and scale, local geometry, or local texture structures. Ideally,

one would like to have a decomposition that is zero every-

where except where there are meaningful features.

For a highly redundant base, finding the sparsest approxima-

tion is NP-hard, but there exist several approximation meth-

ods that attempt to reach a solution in a more affordable way.

The most well-known of these are Matching Pursuit (MP) [2]

(a greedy algorithm which has many cousins), and Basis Pur-

suit Denoising (BPDN) [3]. More recently, a new method

known as Noise Shaping has been developed, based on se-

quentially alternating projections onto the transform space and

the image space [4, 5, 6] This method converges (albeit to

a local minimum), and appears to provide sparser image ap-

proximations than Basis Pursuit or Matching Pursuit [5] when

applied to redundant bases that have reasonably efficient for-

ward and inverse transforms (the efficiency of the algorithm is

directly proportional to the efficiency of the transforms). Nev-

ertheless, direct examination of the solutions suggests that

they can be improved by careful consideration of the proper-

ties of images. In this paper, we develop a modified version

of this method that incorporates some information about im-

age statistics. We show through simulations that this method

can outperform the original Noise Shaping method, in terms

of image quality at a given sparsity level.

This paper is structured as follows: Sec. 2 gives an overview

of the original Noise Shaping algorithm. Sec. 3 presents its

locally adapted version, introducing image statistics in the al-

gorithm. Sec. 4 presents some approximation results. Finally,

5 draws some conclusions.

2. NOISE SHAPING ALGORITHM

The Noise Shaping algorithm [4] iteratively computes a sparse

decomposition of a signal as depicted in Fig. 1. The signal

is first projected onto the full set of basis functions (repre-

sented by transformation T ). In the transform domain, the

coefficients are compared with a global threshold value, θ,

and those that are less than this value are discarded. This

threshold is chosen to achieve a desired level of sparsity (i.e.,

a desired number of coefficients). Next, the approximation

error for this thresholded set of coefficients is computed, by

applying the inverse transform T−1 to the thresholded coef-

ficients and subtracting the resulting signal from the original

image. This approximation error is again transformed using

T , and these transform coefficients of the error are added to
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Fig. 1. Scheme of the Noise Shaping algorithm. Note that ĉ must
be initialized to zero.

the thresholded ones. The resulting coefficients are guaran-

teed to provide an exact representation of the signal, since

T−1
(
T
(
X − T−1fθ (T (X))

)
+ fθ (T (X))

)

= X − T−1fθ (T (X)) + T−1fθ (T (X))

= X,

where fθ is the thresholding operator. This operation is per-

formed iteratively until stability is reached (i.e., when adding

the coefficients of the error and thresholding does not change

the approximation obtained). The sparse representation corre-

sponds to the thresholded coefficients. We refer to this version

of the Noise Shaping algorithm, based on a Global Threshold

(GT), as one shot GT. This algorithm guarantees convergence
to a local minimum, but its final solution is highly dependent

on the initialization parameters [4, 5].

It is possible to increase the performance of the algorithm by

changing its initialization [4, 5]. In particular, one can start

with a more highly sparsified representation, obtained by run-

ning the algorithm with higher threshold settings. More gen-

erally, the algorithm can be run in successive passes, adjusting

the threshold settings on each step so as to increase the num-

ber of coefficients until the desired sparsity is achieved. We

refer to this as the evolutionary GT algorithm.
The evolutionary algorithm provides better approximation per-

formances than the one shot version, at the cost of substantial

additional computation. If the algorithm takes K passes to

achieve convergence, and every step costs an amount of time

τ , the one shot algorithm takes only a timeKτ to achieve the

solution, while the evolutionary algorithm takes SKτ , with

S the number of steps taken to achieve the desired number of

coefficients. Ideally, one would like to have a better way to

achieve the solution, reducing either the number of steps S

and/or the number of passes K, while preserving or improv-

ing the quality.

3. LOCALLY ADAPTIVE NOISE SHAPING

The Noise Shaping algorithm guarantees convergence to a lo-

cal minimum [4, 5]. It is a well known fact that images con-

tain localized structures, and that large-amplitude transform

coefficients tend to cluster around such structures. This be-

havior can be modelled with a local Gaussian process whose

standard deviation is spatially varying [7, 8]. If a Global

Threshold (GT) is used to select a set of coefficients, they

will all be chosen from regions containing high-contrast fea-

tures, and medium- and low-contrast features will be ignored,

decreasing the visual quality of the representation. This sug-

gests that the threshold should be modulated by an estimate

of the local energy or variance of the coefficients, as has been

done in denoising [9]. Based on previous work [10, 11],

we compute this estimate for a given coefficient i using a

weighted �2-norm:

Θ(i) = β ·

√ ∑

j∈N (i)

wj · c
2
j + α, (1)

withN (i) a generalized neighborhood containing coefficients
surrounding the ith coefficient ci, andwj a weight vector over

the neighborhood. The threshold may be efficiently computed

using convolution operations in the transform domain. The

parameter β controls the number of coefficients that remain

after thresholding.

We refer to this modified algorithm, with the global thresh-

old replaced by this locally adapted threshold, as the Local
Energy Threshold (LET). As with the original GT algorithm,
this method may be used in its one-shot or evolutionary form.

The threshold mask is computed once for the one shot algo-

rithm, and once (based on the error-corrected coefficients) for

every step of the evolutionary algorithm.

The LET algorithm can be made more effective by taking into

account only those coefficients that have been retained after

thresholding. The computation ofΘ(i) follows exactly Eq. 1,
but substituting cj by ĉj . The first iteration of this computa-

tion considers all ĉj to be zero, and is thus exactly equal to the

GT algorithm. The threshold mask is re-computed on every

iteration, to incorporate the newly chosen coefficients. We re-

fer to this version of the algorithm as Local Sparsified Energy
Threshold (LSET) algorithm. Again, it is possible to use an
evolutionary LSET or a one shot LSET.

4. RESULTS

This section presents comparisons of the one shot and the

evolutionary LET and LSET algorithms with the GT algo-

rithm. A comparison of the evolutionary GT algorithm with

other sparse approximation techniques (Basis pursuit, Match-

ing pursuit) is provided in [5], where it is shown that it out-

performs the other methods.

For a transform, T , we use the steerable pyramid transform

[12], a redundant multiscale image representation, with ori-

ented basis functions related by translation, rotation and dila-

tion, that forms a tight frame. We expect the results to be sim-

ilar for any multiscale oriented image basis of similar over-

completeness. For the steerable pyramid, the redundancy is

controlled by changing the number of orientations used. The

results presented in this paper are obtained with a steerable
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Fig. 2. Comparison of the performance for the one shot GT, LET
and LSET algorithms.

pyramid with 8 orientations and 5 scales, leading to a more

than six-fold redundancy factor. We found that modest incre-

ments or decrements in the number of orientations or scales

did not lead to noticeable changes in the relative behavior of

the sparsification algorithms. LET and LSET results compute

the energy mask using a simple neighborhood consisting of a

7×7 patch of spatial neighours drawn from all 8 pyramid ori-

entations (total neighborhood size is thus 392). For the results

presented here, wi are uniform weights. The results could

possibly be improved by taking into account specificities of

the signal and the dictionary into the weighting.

Fig. 2 shows the convergence obtained with the one shot

algorithms for the Barbara image (256×256) and the Boats
(512×512), compared with the performance of the evolution-
ary GT algorithm. The difference in quality among the meth-
ods is substantial. The LSET algorithm is noticeably better

than the LET algorithm, which is substantially better than the

one shot GT algorithm. On the other hand, the evolutionary

GT algorithm shows substantial improvements over all one

shot methods for significant numbers of coefficients. This

comes at a substantial computational cost, proportional to the

number of steps needed in the evolutionary algorithm. Fig-
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Fig. 3. Comparison of the performance of the evolutionary GT,
evolutionary LET and evolutionary LSET algorithms.

ure 4 shows a visual comparison of the three different one

shot algorithms at 5000 coefficients. It can clearly be seen

that the use of the local energy of the coefficients to modu-

late the thresholding operation improves the visual quality of

the resulting image. Notice, for example, the texture details

that appear on the shawl around Barbara’s face in the image

obtained with the LSET algorithm that are completely absent

in the GT image. The PSNR value is also substantially bet-

ter. The LET algorithm result is nearly as good as the LSET

visually, but noticeably inferior in terms of PSNR.

Fig. 3 shows the performance of the evolutionary LET and

LSET algorithms compared to the performance of the evolu-

tionary GT algorithm for the same images as in Fig. 2. For

these results, the evolution is done in steps of 5000 coeffi-

cients at a time (for example, a solution with 20000 coeffi-

cients is achieved in 4 steps, of 5000, 10000, 15000 and fi-

nally 20000 coefficients). Decreasing the step size (the jump

on number of coefficients performed at every iteration) in-

creases the performance of all algorithms by roughly equal

amounts, at a substantial cost in computation time. The graphs

of Fig. 3 show the relative approximation performance for dif-

ferent number of coefficients, starting at 5000 coefficients and

finishing at the number of coefficients equivalent to the image
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(a) GT method, PSNR=23.69dB (b) LET method, PSNR=25.18dB (c) LSET method, PSNR=26.45dB

Fig. 4. Visual comparison of the one shot approximation of Barbara (256x256) with 5000 coefficients.

dimension. All curves are subtracted from that of the evolu-

tionary GT algorithm, whose performance thus corresponds

to a horizontal line at zero. The performance of the LET al-

gorithm is always superior to the performance of the GT al-

gorithm, and this is especially noticeable for the low and high

rates. Curiously, the performance of the LSET algorithm is

generally inferior to that of the LET algorithm, and it is even

inferior to the GT algorithm for intermediate rates. We also

found that the LET and especially the LSET algorithm require

fewer iterations to achieve stability than the GT algorithm:

The increase of quality that can be seen in Fig. 3 is not due to

an increase of computational time, but to a more efficient and

effective algorithm.

5. CONCLUSIONS

We have presented a sparsification algorithm that can be ap-

plied to any redundant representations for which the inverse

transform is easily computed. The algorithm is based on the

recent Noise Shaping method [4], and the improvement comes

from the choice of the nonlinear operation used to reduce the

number of active coefficients. In [4, 5], the non-linearity is a

global thresholding of the coefficients. Here, we use an adap-

tive threshold based on an estimate of the local variance of

the coefficients. This simple modification improves the con-

vergence of the algorithm both in number of iterations that

are needed to achieve stability, and the achieved image qual-

ity (for both PSNR and visual appearance). The use of more

complex window shapes, different size neighborhoods, and

neighbors at other scales could enhance the adaptation of the

dictionary to the statistical properties of images, and could

lead to improvements over the results presented here.
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