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ABSTRACT

In this paper, we introduce new multiscale AM-FM demod-

ulation algorithms that provide significant improvements in

accuracy over previously reported approaches. The improve-

ments are due to the use of new filterbanks based on separable

filters supported in just two quadrants. The QEA, robust-QEA

and Vakman methods are improved with this new filterbanks.

A number of 2-D AM-FM examples are presented, where we

observe significant accuracy improvements. For Lena, the

mean-square-error for the AM-FM harmonic reconstruction

is reduced by 88.31%. Similarly, for a AM-FM synthetic ex-

ample of sinusoidal phase and Gaussian amplitude, the mean-

square-error is reduced by: (i) 70.86% for the reconstruction,

(ii) 99.66% for the instantaneous amplitude and (iii) 96.52%

for the sinusoidal instantaneous frequency component.

Index Terms— Multidimensional demodulation, multidi-

mensional amplitude modulation, multidimensional frequency

modulation.

1. INTRODUCTION

Amplitude-modulation frequency-modulation (AM-FM) mod-

els allow us to model non-stationary image content in terms

of a series expansion of AM-FM component images. We con-

sider AM-FM expansions of the form:

I(x, y) =
n=M∑
n=1

a(x, y) cos(nϕ(x, y)). (1)

In (1), an input image I(.) is a function of a vector of spa-

tial coordinates. A collection of M AM-FM harmonic im-

ages a(x, y) cos(ϕ(x, y)) are used to reconstruct the input

image. In this paper, we consider AM-FM components esti-

mated over a multiscale filterbank (see Fig. 1).

The instantaneous amplitude (IA) functions a(x, y) are al-

ways assumed to be positive. For each frequency modulated

(FM) component, we associate an instantaneous frequency

(IF) vector field ∇ϕ(x, y):

∇ϕ(x, y) =
(

∂ϕ

∂x
(x, y),

∂ϕ

∂y
(x, y)

)
. (2)

Given a real image I(x, y), we need to compute the AM-FM

component images. We use the term AM-FM demodulation

to imply the computation of the instantaneous amplitude (IA)

a(x, y), the phase function ϕ(x, y), and the instantaneous

frequency (IF) vector function ∇ϕ(x, y) from the given im-

age I(x, y). In this paper, we develop new multiscale filter-

banks using separable 1D filters. With the new filterbanks, we

were able to obtain significant improvements over our previ-

ously reported results [1]. In addition to image reconstruc-

tion methods, AM-FM models have been used in a variety

of applications. Recently, theory and applications of multi-

dimensional frequency modulation are reported in [2]. Prior

applications include image retrieval in digital libraries [3] and

video segmentation [4].

We summarize existing image demodulation methods in sec-

tion 2. New filterbanks and the image reconstruction method

are presented in section 3, and comparative results are shown

in section 4. Concluding remarks are given in section 5.

2. AM-FM IMAGE DEMODULATION METHODS

2.1. Non-robust Demodulation

For any given image f(.), we compute a two-dimensional an-

alytic signal, as given in [5]:

fAS(x, y) = f(x, y) + jH2d[f(x, y)], (3)

where H2d denotes the one-dimensional Hilbert transform op-

erator applied along the rows (or columns). We estimate the

instantaneous amplitude, the instantaneous phase, and the in-
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stantaneous frequency using

a(x, y) = |fAS(x, y)|, (4)

ϕ(x, y) = arctan
(

imag(fAS(x, y))
real(fAS(x, y))

)
and (5)

ω(x, y) = real
[
−j

∇fAS(x, y)
fAS(x, y)

]
. (6)

The algorithm can be summarized into two steps. First, we

compute the analytic signal using (3). Second, we compute

all the estimates using (4), (5), (6). A discrete-space extension

of the algorithm can be developed using the quasi eigenfunc-

tion approximation [6]. This leads to the following discrete

formulas for estimating the instantaneous frequency vectors:

∂ϕ

∂x
(k1, k2) ≈ arcsin

[
fAS(k1 + 1, k2) − fAS(k1 − 1, k2)

2jfAS(k1, k2)

]
,

(7)

∂ϕ

∂y
(k1, k2) ≈ arcsin

[
fAS(k1, k2 + 1) − fAS(k1, k2 − 1)

2jfAS(k1, k2)

]
,

(8)

∂ϕ

∂x
(k1, k2) ≈ arccos

[
fAS(k1 + 1, k2) + fAS(k1 − 1, k2)

2fAS(k1, k2)

]
,

(9)

∂ϕ

∂y
(k1, k2) ≈ arccos

[
fAS(k1, k2 + 1) + fAS(k1, k2 − 1)

2fAS(k1, k2)

]
.

(10)

2.2. Robust Demodulation Using the Quasi-Eigenfunction
Approximation

It can be shown that the quasi-eigenfunction approximation

described in (7)-(10) is numerically unstable. To show this,

in [1] we computed the condition numbers of each one of the

inverse trigonometric functions, and noted that they can grow

unbounded at different frequencies (also see [7] for the defi-

nition of the condition number). However, it turns out that the

functions are unbounded over different, discrete fourier fre-

quencies. Thus, a robust demodulation algorithm can be de-

signed that chooses between (7) and (9) and also between (8)

and (10) for estimating the components of the instantaneous-

frequency. Dramatic improvements are possible using this ap-

proach [1].

2.3. Continuous-Space, Multidimensional Demodulation
for the Quasi-Local Method

We first assume that the input image is a single AM-FM har-

monic f(x, y) = a(x, y) cos ϕ(x, y). For estimating the IA,

we first noted that

2f2(x, y) = a2(x, y) + a2(x, y) cos(2ϕ(x, y)). (11)

If we use a lowpass filter h(.) to reject the high frequencies in

(11), we get the IA estimate [1]

â(x, y) =
√

2f2(x, y) ∗ h(x, y). (12)

Define gx by

gx(ε1, ε2) = f(x + ε1, y)f(x − ε2, y) (13)

and Rx by

Rx(ε) =
2h(x, y) ∗ {gx(ε, ε)}

h(x, y) ∗ {gx(ε, 0) + gx(0, ε)} (14)

Then, using Rx, we can get an IF estimate along the x-component

using (see [1])

∣∣∣∣∂ϕ(x, y)
∂x

∣∣∣∣ = lim
ε→0+

{
1
ε

arccos

(
Rx(ε) +

√
R2

x(ε) + 8
4

)}
.

The discrete-space algorithm follows directly by considering

a discrete lattice for x, y, so that (x, y) = (nΔx, mΔy),
for n, m ∈ Z and for ε to be some positive integral multi-

ple of Δx. For the y-dimension, a similar approach can be

taken. Furthermore, it is straight-forward how to extend the

algorithm for any finite number of dimensions.

To estimate the signs of the IF vector components, we use

a hybrid approach that uses (6) to determine the sign. Fur-

thermore, in the hybrid approach, we use (5) for estimating

the phase.

3. NEW FILTERBANKS AND RECONSTRUCTION

In this paper, we consider multiscale, separable approxima-

tions for implementing the demodulation filterbanks.

For estimating the correct 2D frequency, each filter has fre-

quency support in just two quadrants (Fig. 1 (a), (b) and,

(c)). This leads to better estimates than estimates from the

use of Wavelet-type filters supported in all four quadrants.

Also, with the coverage of the full 2D frequency spectrum,

the proposed use of multiscale filterbanks leads to much bet-

ter frequency-domain localization of the instantaneous fre-

quency.

Each filter was designed to have a pass band ripple of 0.001dB

and a stop band ripple of 0.0005dB. For the design, we used

equiripple dyadic FIR filters. We designed filterbanks using

two, three and four levels (see Fig. 1 (a)-(c)).

We consider reconstructing an image using M AM-FM har-

monics:

Î(x, y) =
n=M∑
n=1

cna(x, y) cos (nϕ(x, y)) . (15)

Then, we want to compute the AM-FM harmonic coefficients

cn, n = 1, 2, . . . , M , so that Î(x, y) is a least-squares esti-

mate of I(x, y) over the space of the AM-FM harmonics.
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(a) (b) (c)

Fig. 1. New multiscale filterbanks with filters supported in

just two quadrants: (a) Seven filters, (b) Thirteen filters, and

(c) Nineteen filters.

We compute cn using:⎡
⎢⎣

c1

...

ch

⎤
⎥⎦ =

(
AT A

)−1 (
AT b

)
, (16)

where the columns of A are the AM-FM harmonics, and b
is a column vector of the input image. We also compute an

orthonormal basis over the space of the AM-FM harmonics

using the Modified Gram-Schmidt (MGS) Algorithm [8]).

4. RESULTS

We present comparative results from demodulation from a

real-life example (Lena) and a synthetic image. All the re-

constructions were computed using ten AM-FM harmonics.

In both cases, 512x512 gray images were used. Fig. 2 shows

the values of the mean-square-error (MSE) for the reconstruc-

tion of the images, while Table 1 shows the improvement, in

percentage, in terms of MSE of the new filterbanks compared

with previous approaches (see [1]). With the use of just one

harmonic, a reduction up to 88.31% of the original MSE was

reached in the case of Lena, and up to 70.86% in the case of

the synthetic data. We can see how increasing the number

of harmonics used for the reconstruction, we get lower MSE

values. From the results, Fig. 2 shows how the robust QEA

method always produces the best results (lowest MSE).

Fig. 3 shows results related to Lena. The original image is

shown in (a) whereas the reconstruction using the robust QEA

method is shown in (c). With the use of the new filterbank,

the reconstruction was improved up to 71.02 of MSE (85.04%

of reduction compared with [1]) in (d). The estimation of the

phase without considering the low frequencies is shown in

(b). This result shows how the new filterbank, together with

the robust QEA method, is able to track the high frequency

changes in Lena’s hair (Fig. 3 (e) and (f)).

In the case of the synthetic example (Fig. 4(a)), it was gener-

ated using:

I(x, y) = e

(
−( 2x

N )2−( 2y
N )2

)
cos (2π (0.1y + cos (0.1x))) ,

(17)

MSE value

Number of harmonics

1 2 4 6 10

Lena rec. 72.21 71.66 71.45 71.40 71.02

syn. im. rec 0.02 0.02 0.02 0.02 0.02

Reduction in MSE (%)

1 2 4 6 10

Lena rec. 88.31 88.25 86.28 86.09 85.04

syn. im. rec. 70.86 70.86 64.99 64.95 64.81

syn. im. IA 99.662

syn. im. IFx 96.524

syn. im. IFy 98.724

Table 1. Performance in the reconstruction of the images in

terms of the MSE, and performance in the reduction of the

MSE for the reconstruction, IA and IF estimations compared

with [1].

for x, y = −N
2 , . . . , N

2 − 1. The original image (Fig. 4(a))

and the original IA (b) are compared. The IA estimated us-

ing [1] is shown in (d) and it is clearly of lower quality as

compared to the IA estimated with the new filterbank (f). The

new reconstruction (e) has lower MSE than the one in (c).

The reduction of the MSE in [1] was up to 70.86% for the

reconstruction and up to 99.662% for the IA.

5. CONCLUSIONS

With the improved reconstruction of the images, a wide range

of applications can benefit. Moreover, high-frequency changes

in real-life images can now be successfully tracked (as demon-

strated in the case of Lena’s hair). Clearly, all prior applica-

tions that were based on AM-FM demodulation can benefit

from using the new filterbanks presented in this paper.
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Fig. 2. MSE in the reconstruction using the robust QEA. (a)

Lena. (b) Synthetic image.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Results for Lena using three levels in the filterbank. (a)

Original image, (b) cos ϕ(x, y) without the use of the LPF, (c)

Image reconstruction using the robust QEA method in [1], (d)

Image reconstruction using the robust QEA method with new

filterbanks, (e) IF vectors and, (f) Zoom of the IF to Lena’s

hair.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Results for synthetic image using two levels in the

filterbank. (a) Original image, (b) Original IA, (c) Image re-

construction using the robust QEA method in [1], (d) IA using

the robust QEA method in [1], (e) Image reconstruction using

the robust QEA method with new filterbanks, (f) IA using the

robust QEA method with new filterbanks.
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